
TIMESAT 3.3
with seasonal trend decomposition

and parallel processing

Software Manual

1 37 73 109 145 181 217 253 289 325 361 397
130

140

150

160

170

180

190

200

210

220

Time

D
at

a

Row: 1 Col: 1

Lars Eklundha and Per Jönssonb

a Department of Physical Geography and Ecosystem Science, Lund University, Sweden
b Department of Materials Science and Applied Mathematics, Malmö University, Sweden

http://www.nateko.lu.se/TIMESAT/

2017-05-29

Contents

1 Introduction 5
1.1 About TIMESAT and the software manual 5
1.2 TIMESAT version 3.3 vs. version 3.2 . 6
1.3 TIMESAT home page . 6
1.4 Using and citing TIMESAT . 7
1.5 Applications of TIMESAT . 7
1.6 About the authors . 8

2 Overview of data processing 10
2.1 Sequential data . 10
2.2 Image data . 11

3 Methodology 13
3.1 Least-squares fitting . 14
3.2 On the use of ancillary quality data for assigning weights 14
3.3 Pre-processing to remove spikes and outliers 14
3.4 Adaption to the upper envelope . 16
3.5 Determination of the number of seasons . 16
3.6 Adaptive Savitzky-Golay filtering . 17
3.7 Fits to asymmetric Gaussians and double logistic functions 18
3.8 Separable non-linear least-squares fits . 20
3.9 Merging of local functions . 20
3.10 Seasonal trend decomposition . 21

4 Extraction of seasonality parameters 23
4.1 Seasonality parameters derived from time-series spanning n years 23
4.2 Extracting seasonality parameters from one year of data 23
4.3 Defining start and end of season . 24
4.4 Extracted seasonality parameters . 26

5 Aspects of processing 27
5.1 Characteristics of the processing methods . 27
5.2 Controlling the processing: input settings . 28
5.3 Description of input settings . 32

6 Output data 36
6.1 Files with time-series: *.tts . 36
6.2 Files with seasonality parameters: *.tpa . 37
6.3 Files with output from STL trend analysis . 38
6.4 Extracting images of seasonality parameters 38
6.5 Output files from ASCII data . 38
6.6 Index files . 39

7 Installation of TIMESAT and program structure 41

2

7.1 System requirements . 41
7.2 Installation . 41

8 Program and processing overview 42
8.1 Processing logic . 42
8.2 Naming convention of programs . 43
8.3 Program versions . 43

9 Getting started with TIMESAT – a quick tutorial 45
9.1 Preparing the data . 45
9.2 Starting the TIMESAT menu system . 47
9.3 TSM_imageview . 48
9.4 TSM_GUI . 50
9.5 TSM_settings . 55
9.6 TSF_process . 57
9.7 TSF_process parallel . 58
9.8 Post-processing the results of a TSF_process run 59
9.9 Checklist for processing new vegetation index image data 66

10 Reference manual 69
10.1 TSM_menu . 69
10.2 TSM_imageview . 71
10.3 TSM_GUI . 72
10.4 Data input for TSM_GUI . 74
10.5 Settings in TSM_GUI . 75
10.6 Output files from TSM_GUI . 76
10.7 TSM_settings . 76
10.8 TSF_process . 78
10.9 TSF_process parallel . 78
10.10TSF_readheader (obsolete) . 79
10.11TSM_fileinfo . 79
10.12TSM_printseasons . 79
10.13TSM_viewfits . 80
10.14TSF_fit2time . 80
10.15TSF_fit2img . 80
10.16TSF_seas2img . 81
10.17TSF_merge . 82
10.18Running from the command prompt to automate processing 83
10.19Working in Linux as compared to Windows 83
10.20Input files for TIMESAT . 84
10.21Output files for TIMESAT . 88
10.22Index files . 89

11 Acknowledgements 89

12 References 90

3

Part I
Introduction to TIMESAT

4

1 Introduction

Time-series of vegetation index derived from satellite spectral measurements can be used to
gain information on seasonal vegetation development. This information aids analyzes of the
functional and structural characteristics of the global and regional land cover and adds to our
current knowledge of global cycles of energy and matter. Long time-series of vegetation index
data can also provide information on shifts in the spatial distribution of bio-climatic zones,
indicating variations in large-scale circulation patterns or land-use changes.
Although the value of remotely sensed time-series data for monitoring vegetation seasons
has been firmly established, only a limited number of generally available methods exist for
exploring and extracting seasonality parameters from such data series. For this reason the
Timesat program package for extracting seasonal parameters has been developed.

1.1 About TIMESAT and the software manual

The Timesat 3.3 software manual consists of three parts. Part I gives general information
together with examples of some applications of Timesat. Part II describes the algorithms
underlying the software package. Also the settings affecting the processing are discussed in
detail. Part III is the software user’s guide, with detailed information on how to install, run,
and handle the program package.
The Timesat program package is designed primarily for analyzing time-series of satellite
data and uses an adaptive Savitzky-Golay filtering method and methods based on upper
envelope weighted fits to asymmetric Gaussian and double logistic model functions (Jönsson
and Eklundh, 2002, 2003, 2004). From the fitted model functions a number of seasonality
parameters, e.g. beginning and end of the growing season, can be extracted. Parameters for
a number of pixels can be merged into a map displaying seasonality on a regional or global
scale.
Timesat consists of a number of numerical and graphical routines coded in Matlab and
Fortran. Timesat is normally run from Matlab. However, also users without Matlab installed,
or even without a Matlab license, can use the software. Processing is then done through a
runtime engine called the Matlab Compiler Runtime (MCR), that is set up on the users
machine by executing the file MCRinstall.exe (see section 7.2). The latter file is provided
along with the Timesat program package. Fortran routines are highly vectorized and efficient
for use with large data sets. The Fortran routines are pre-compiled for Windows and Linux.
Timesat has been developed over many years. During these years a number of new features
have been added. Below are the main features of Timesat 3.3:

• Contains several smoothing methods for time-series data

• Includes seasonal trend decomposition by LOESS (STL)

• Contains several methods for detection of outliers

• Allows for weighting of data using quality information

• Allows for fitting to the upper envelope of the data

5

• Contains four methods for defining start and end of growing seasons

• Generates 13 seasonality parameters

• Individual processing for different land cover classes

• Versatile graphical user interface (GUI)

• Runs with or without Matlab installed

• Runs under Linux and Windows

• Allows for parallel processing on multicore computers to handle massive data sets

1.2 TIMESAT version 3.3 vs. version 3.2

There are some changes in Timesat version 3.3 compared to version 3.2. The most important
of these changes are:

• Seasonal trend decomposition by STL added.

• Added two new methods for setting start of season (SOS) and end of season (EOS):
relative amplitude and STL trendline crossing.

• Added two new seasonality parameters: data value at SOS and data value at EOS.

• Changed the settings file format.

• Added several checks on seasonality consistency.

• Relaxed checks on no. of missing values in input data.

• Legend added in TSM_GUI; changed checkboxes for fitting methods into list. Last browse
folder now remembered.

• Updated TSF_seas2image. The method now looks for a season based on the time for
the maximum rather than SOS/EOS. This results in fewer missing data points.

• Fixed bug in parallel processing of large files.

• NaN data now allowed in image input files.

• Various cosmetic fixes.

For backward compatibility some obsolete routines are kept.

1.3 TIMESAT home page

On the Timesat home page http://www.nateko.lu.se/TIMESAT/timesat.asp the full pro-
gram package, along with documentation and test data sets, is available for download in the
form of a zip-file. The installation of the package from the zip-file is described in section 7.2
in Part III of this manual. On the home page there are also answers to frequently
asked questions as well as other information.

6

1.4 Using and citing TIMESAT

Timesat is provided to the scientific community for non-commercial and non-military pur-
poses. However, the intellectual ownership and the right to distribute the program remains
with the creators. Access to the software is granted upon registration. Users of Timesat
should quote this document and our two main publications:

Eklundh, L. and Jönsson, P., 2017, Timesat 3.3 Software Manual, Lund and Malmö Univer-
sity, Sweden.

Jönsson, P. and Eklundh, L., 2002, Seasonality extraction and noise removal by function
fitting to time-series of satellite sensor data, IEEE Transactions of Geoscience and Remote
Sensing, 40, No 8, 1824 – 1832.

Jönsson, P. and Eklundh, L., 2004, Timesat - a program for analyzing time-series of satellite
sensor data, Computers and Geosciences, 30, 833 – 845.

Timesat is the intellectual property of Per Jönsson, Malmö University, Sweden and Lars
Eklundh, Lund University, Sweden. In case of questions, suggestions or any comments please
contact the authors by e-mail at per.jonsson@mah.se and lars.eklundh@nateko.lu.se. We
cannot guarantee user support, but we will do our best to answer questions.

1.5 Applications of TIMESAT

Timesat has been used in a number of applications, e.g. for characterizing phenology (Ek-
lundh and Jönsson 2003) and for mapping environmental and phenological changes in Africa
from 1982 till today (Eklundh and Olsson 2003, Olsson et al. 2005, Seaquist et al. 2006,
Heumann et al. 2007, Hickler et al. 2005, Seaquist et al. 2009), for improving data in ecosys-
tem classification (Tottrup et al. 2007), for use with MSG SEVIRI data (Stisen et al. 2007),
for mapping high-latitude forest phenology (Beck et al. 2007), and to evaluate satellite and
climate data-derived indices of fire risk in savanna ecosystems (Verbesselt et al. 2006) as well
as to monitor human footprints on fire seasons (Le Page et al. 2010).
We use Timesat as an integrated part in our development of carbon models based on data
from Terra/MODIS (Olofsson and Eklundh 2007, Olofsson et al. 2007, 2008, Sjöström et al.
2009, 2011, Schubert et al. 2010, 2012), and for analyzing relationships between NDVI of
nemoboreal and boreal coniferous forests and models of conifer cold hardiness, bud burst and
photosynthetic efficiency (Jönsson et al. 2010). We also use Timesat with Terra/MODIS
data in the development of systems for detection of forest disturbances, e.g. due to insect
infestations (Eklundh et al. 2009).
A modified version of Timesat v. 2.3 is integrated in the processing of MODIS data into a
phenology product (MOD09PHN and MOD15PHN) by the North American Carbon Program
(Gao et al. 2008).
TIMESAT has also been used for improving the data quality of MODIS and AVHRR satellite
products (Yuan et al. 2011, Fensholt and Proud 2012, Barichivich et al. 2013).
A more complete summary of applications of Timesat is given in L. Eklundh and P. Jönsson.
"Timesat: A software package for time-series processing and assessment of vegetation dynam-
ics," in Remote Sensing Time Series, C. Kuenzer, S. Dech and W. Wagner, Ed. Heidelberg:
Springer, 2015, pp. 141-158.

7

1.6 About the authors

Lars Eklundh received the Ph.D. degree in physical geography from Lund University, Lund,
Sweden in 1996. He is currently Professor at Lund University. He was with the United Nations
Environment Program (UNEP) from 1989 to 1992. His primary research interest is remote
sensing for the analysis of spatial and temporal variation of vegetation parameters. Main
fields of application include climate variability, carbon cycle research, phenology, and forest
disturbances. He is funded by the Swedish National Space Board and the Swedish Research
Council FORMAS.

Per Jönsson studied mathematics, physics, and astronomy and received the Ph.D. degree
in physics from Lund University, Lund, Sweden in 1995. From 1995 to 1997 he was a Post
Doctoral Research Assistant in computer science at Vanderbilt University, Nashville, USA. Per
Jönsson holds a position as Professor in applied mathematics at Malmö University, Sweden.
His primary research interest is in computational science with applications to atomic- plasma-,
and astrophysics. More recently he has geared into remote sensing and ecosystem analysis.
Per is a partner in the program for remote sensing and phenology modeling for detecting forest
changes due to climate change. His research in remote sensing is supported by the Swedish
National Space Board.

8

Part II
Algorithm Theoretical Basis Document

Some of the seasonality parameters generated in TIMESAT: (a) beginning of season, (b) end of
season, (c) length of season, (d) base value, (e) time of middle of season, (f) maximum value,
(g) amplitude, (h) small integrated value, (h+i) large integrated value. This figure is licensed
under a Creative Commons Attribution-NonCommercial-NoDerivs 2.5 Sweden License. It is
free to copy and use in other work.

9

2 Overview of data processing

Timesat is primarily designed to process time-series of vegetation index derived from satellite
spectral measurements. However, other types of data such as meteorological index, fire data,
and eddy co-variance carbon flux data can also be processed (Verbesselt et al., 2006, Le Page
et al., 2010). Ancillary quality data may also be used to guide the processing of the time-
series. Sequential data as well as data organized in images (two-dimensional spatial arrays)
can be handled.

2.1 Sequential data

In the simplest setting Timesat processes a number of time-series in an ASCII file. The first
line of the ASCII file gives information about the number of years spanned by the time-series,
nyear, the number of data values per year, nptperyear, and the number of time-series in the
file, nts. Below the first line the time-series y1, y2, . . . , yN , with N = nyear×nptperyear, are
given line by line. In total there are nts lines with time-series. Optionally, the time-series file
is accompanied with a file in the same format with quality indicators q1, q2, . . . , qN . Given the
number of data values per year, the indices 1, 2, . . . , N of the time-series directly translates
to time values t1, t2, . . . , tN . The data structure of the ASCII file is displayed in Figure 1.

nyear nptperyear nts

y1 y2 ... yN
y1 y2 ... yN

y1 y2 ... yN

nts

Figure 1: Data structure of ASCII files containing time-series. The first line of the file gives
information about the number of years spanned by the time-series, nyear, the number of data
values per year, nptperyear, and the number of time-series in the file, nts. After the first line
with general data the time-series are given line by line.

Given the ASCII file with time-series and, optionally, a file with quality indicators and a file
with input settings (see sections 5.2 and 5.3), Timesat fits a smooth function to each of the
time-series and extracts seasonality data such as start and end of the season or length of
season. The steps of the processing are summarized below.

1. Read input settings that define the processing of the time-series.

2. Read first line of the ASCII files giving information about the length and sampling of a
time-series as well as the number of time-series.

3. Loop over the time-series in the file.

(a) Read time-series y1, y2, . . . , yN and, optionally, quality indicators q1, q2, . . . , qN .

(b) Pre-process time-series under the guidance of the quality indicators.

10

(c) Fit a smooth function to the time-series.

(d) Use fitted function to extract seasonality parameters.

(e) Write seasonality parameters and fitted function to file.

The original time-series and the fitted functions can be displayed by the Timesat routines
or by user programs written in e.g. Matlab. In Figure 2 we display a processed time-series
covering five years. The start and end of the seasons are marked with filled circles.
Settings defining the regression model for the fits, how outliers and quality data are handled
etc. are given in the input settings file. For convenience the settings are summarized in
sections 5.2 and 5.3 of this document. The input settings file can be created manually or,
better, by using the Timesat graphical user interface (GUI). The user interface is described
in Part III of this manual.

0 20 40 60 80 100 120 140 160 180
140

160

180

200

220

240

260

time (decades)

sc
al

ed
 N

D
V

I

Figure 2: Time-series y1, y2, . . . , yN covering a period of 5 years. Seasonality parameters from
the 4 full seasons are determined from the fitted functions.

2.2 Image data

Remotely sensed data are often organized in binary images (two-dimensional spatial arrays).
Though any kind of remotely sensed data can be used, vegetation index data are very common
in time-series analysis. We will thus refer to time-series image data as vegetation index data
in the following text. Each image gives the vegetation index values in the array at a specified
time. By extracting vegetation index values at a pixel (j, k) in the array for consecutive times,
a time-series y1, y2, . . . , yN is obtained for this pixel (see Figure 3). In some cases data are
complemented by quality data that are organized in images in a similar way.
Frequently data have been spatially clustered and each pixel (j, k) has been assigned a land
cover class e.g. water, cropland, deciduous, and coniferous forest. Time-series in a class share
some characteristics and are sometimes quite different from time-series in other classes. It is
advantageous to be able to use separate processing schemes for each class.

Given a stack of images with vegetation index and, optionally, a stack of images with quality
indicators, and a file with input settings (see sections 5.2 and 5.3), Timesat smooths each

11

(j,k)

(j,k)

(j,k)

(j,k)

(j,k)

1

2

N

time

20 40 60 80 100 120 140 160 180
time

ve
ge

ta
tio

n
in

de
x

Figure 3: Vegetation index data are organized in images (left panel). An image i gives index
values over an area for the time ti. By extracting values at a pixel (j, k) for consecutive times,
a time-series y1, y2, . . . , yN is obtained for this pixel (right panel). The pixel may be assigned
a land use class, and it is possible to use separate processing schemes for each class.

of the time-series in a defined area and extracts seasonality data such as start and end of
the season or the length of the season. The details of the processing, which depends on the
assigned land use class of the pixel, are summarized below.

1. Read file containing the names of all the images with vegetation data, and optionally,
the images with quality data. Read file with land use classes.

2. Give spatial extension of the area in the image that should be processed. Supply infor-
mation about the image format (8-bit unsigned integer, 16-bit signed integer etc).

3. Read general as well as land use class-specific input settings that define the processing
of the time-series.

4. Loop over pixels (j, k), serial or in parallel, in the defined area. For each pixel:

(a) Extract time-series y1, y2, . . . , yN and, optionally, quality indicators q1, q2, . . . , qN
from images.

(b) Read land use classification for the current pixel.

(c) Pre-process time-series under the guidance of the quality indicators and land use
classification.

(d) Fit a smooth function to the time-series.

(e) Use fitted function to extract seasonality parameters.

(f) Write seasonality parameters and fitted function to files.

5. Read files with seasonality parameters and generate maps.

Files with extracted parameters are used to generate seasonality maps or images at regional
or continental scale. Comparing images of the same quantity for consecutive years may reveal

12

Figure 4: Seasonal amplitude in Ethiopia in 1982 and 2000 from functions fitted to data from
NOAA/AVHRR. Red is translated into high amplitude in the image and it is seen that there
are some distinct changes in the vegetation index between the years.

shifts in vegetation coverage due to climate change or other dynamical events (Eklundh and
Olsson 2003, Heumann et al. 2007). In Figure 4, two images of the seasonal amplitude, as
derived from functions fitted to data from NOAA/AVHRR, in an area covering a portion of
N. Eastern Africa are displayed. The image to the left displays the amplitude in 1982 and
the image to the right displays the amplitude in 2000.

3 Methodology

Timesat implements three processing methods based on least-squares fits to the upper en-
velope of the vegetation index data. The first method uses local polynomial functions in the
fitting, and the method can be classified as an adaptive Savitzky-Golay filter. The other two
methods are least-squares methods, where data are fitted to non-linear model functions of dif-
ferent complexity. All three processing methods use a preliminary definition of the seasonality
(uni-modal or bi-modal) along with approximate timings of the growing seasons. In addition
Timesat 3.3 implements Seasonal Trend Decomposition by LOESS (STL) (Cleveland et al.
1990).
We start by a general description of weighted least-squares fits. Pre-processing and removal
of outliers are discussed, and then we go on to describe an iterative method to adapt the
fitted functions to the upper envelope of the data. This is followed by an account on how to
determine the number of annual growing seasons and their approximate timing. The details
of the processing methods are given, and finally the extraction of seasonality information is
described.

13

3.1 Least-squares fitting

Assume that we have a time-series (ti, yi), i = 1, 2, . . . , N and a model function f(t) of the
form

f(t) = c1ϕ1(t) + c2ϕ2(t) + . . .+ cMϕM (t), (1)

where ϕ1(t), ϕ2(t), . . . , ϕM (t) are given basis functions. The best values, in the least-squares
sense, of the parameters c1, c2, . . . , cM are obtained by solving the system of normal equations

ATAc = ATb, (2)

where
Aij = wiϕj(ti), bi = wiyi. (3)

Here wi is the weight of the ith data value, presumed to be known. Values with small weights
will influence the fit less than values with large weights. If the weights are not known they
may all be set to the constant value w = 1 (Press et al. 1994).

3.2 On the use of ancillary quality data for assigning weights

In Timesat cloud classifications and other ancillary data may be used to assign weights to the
values in the time-series, such as the QA quality labels accompanying the MODIS satellite
sensor data. Another example, used in the Timesat tutorial, is the Pathfinder AVHRR
Land (PAL) Normalized Difference Vegetation Index (NDVI) accompanied by Clouds from
AVHRR (CLAVR) that is a cloud indicator based on thresholds of the AVHRR reflectance
and thermal channels. The original CLAVR data lie between 1 and 31, representing the three
broad groups; cloudy (1 – 11), mixed (12 – 21), and clear (22 – 31). Values in the time-series
associated with these three groups can be assigned different weights. In previous work weights
w = 0, 0.5 and 1 have been used for values in the time-series associated with, respectively,
cloudy, mixed and clear conditions. There are, of course, no general rules for converting
ancillary data to weights associated with the values in the time-series, and the user of the
Timesat program is encouraged to take an experimental approach and test different settings.
Figure 5(a) depicts a time-series for which the values have been assigned weights based on the
CLAVR values. Large circles indicate clear conditions (w = 1), small circles indicate mixed
conditions (w = 0.5), and no circle indicate clouds (w = 0). From the figure it is seen that
several of the negatively biased outliers are associated with cloudy conditions. By assigning
zero weight to these cloudy values they will not influence the subsequent fitting.

3.3 Pre-processing to remove spikes and outliers

As we have seen some spikes and outliers may be detected using ancillary quality data. In
many time-series there are, however, remaining positive and negative outliers that seriously
impair the function fits. Three different methods for removing these outliers can be selected.
In the first method a data value is defined as an outlier following two criteria: (1) it deviates
more than a maximum deviation (here called cutoff) from the median in a moving window
(half window width = number of values per year/7), and (2) it is lower than the mean value
of its immediate neighbors minus the cutoff (y(t) < mean(y(t − 1), y(t + 1)) − cutoff) or it
is larger than the highest value of its immediate neighbor plus the cutoff (y(t) > max(y(t −

14

(a)

20 40 60 80 100
140

150

160

170

180

190

200

210

220

time (decades)

sc
al

ed
 N

D
V

I

cloudy

clear

mixed

(b)

20 40 60 80 100
140

150

160

170

180

190

200

210

220

time (decades)

sc
al

ed
 N

D
V

I

spikes

Figure 5: (a) Time-series where the values have been assigned weights: w = 1 (large circles),
w = 0.5 (small circles), and w = 0 (no circle). (b) Time-series together with values from a
median filtering. Values in the time-series that are sufficiently different from both the left- and
right-hand neighbors and the median filtered value are classified as outliers and are assigned
weight 0. Detected spikes (outliers) are marked by crosses.

1), y(t + 1)) + cutoff). The cutoff is the standard deviation of the entire time-series times a
factor given by the user. In the second method, which is more global in character and not
dependent on ancillary data, values in the time-series are assigned weights based on an STL-
decomposition (Cleveland et al. 1990). STL is described in section 3.10. Finally, in the third
method values in the time-series are assigned weights that are products of the weights from
the STL-decomposition and weights assigned based on the ancillary data. It is important to
pay attention to the pre-processing, since remaining spikes and outliers may seriously degrade
the final function fits. Since pre-processing is data dependent we recommend the user to take
an experimental approach and test different settings.

15

3.4 Adaption to the upper envelope

To take into account that most noise in NDVI and other vegetation indices generated from re-
motely sensed land data is negatively biased, the determination of the parameters c1, c2, . . . , cM
of the model function is done in two or more steps. In the first step the parameters are ob-
tained by solving the system of normal equations with weight w1, w2, . . . , wN obtained from
the ancillary cloud data or from the STL-decomposition. Data values below the model func-
tion of the first fit are thought of as being less important, and in the second step the system
is solved with the weights of the low data values decreased by some factor. In Timesat this
can be repeated 2 times. This multi-step procedure leads to a model function that is adapted
to the upper envelope of the data (see Figure 6).

(a)

0 20 40 60 80 100
140

150

160

170

180

190

200

210

220

230

240

time (decades)

sc
al

ed
 N

D
V

I

(b)

0 20 40 60 80 100
140

150

160

170

180

190

200

210

220

230

240

time (decades)

sc
al

ed
 N

D
V

I

Figure 6: Fitted functions from a multi-step procedure. The thin solid line represent the
original NDVI data. (a) The thick line shows the fitted function from the first step. (b) The
thick solid line displays the fit from the last step where the weights of the low data values have
been decreased.

3.5 Determination of the number of seasons

The high level of noise often makes it difficult to determine the number of annual seasons
based on data for only one year. Including data from surrounding years reduces the risk for
erroneous determinations. In Timesat, de-trended data values (ti, yi), i = 1, 2, . . . , N in the
time-series are fit to a model function

f(t) = c1 + c2 sin(ωt) + c3 cos(ωt) + c4 sin(2ωt) + c5 cos(2ωt), (4)

where ω = 2π · nyear/N . The first basis function determines the base level whereas the
pairs of sine and cosine functions correspond to, respectively, one and two annual vegetation
seasons.
The fitting procedure always gives a primary maximum. In addition, a secondary maximum
may be found. If the amplitude ratio between the secondary maximum and the primary
maximum exceeds a user defined threshold – the seasonality parameter – we have two annual
seasons. If the amplitude ratio is below the threshold we have one annual season (see figure 7).
By carefully selecting the seasonality parameter Timesat will discriminate between noise and
a second annual season. Setting the seasonality parameter to 1 forces the program to treat

16

(a)

0 20 40 60 80 100
130

140

150

160

170

180

190

200

time (decades)

sc
al

ed
 N

D
V

I

primary maximum

secondary maximum

(b)

0 20 40 60 80 100

150

160

170

180

190

200

210

time (decades)

sc
al

ed
 N

D
V

I

primary maximum

secondary maximum

Figure 7: If the amplitude ratio is below a user defined threshold we have one annual season.
If the ratio is above the threshold we have two annual seasons.

data as if there is one annual season. Setting the seasonality parameter to 0 forces the program
to treat data as if there are two annual seasons. Information on the number of annual seasons
is used further on in the Timesat program to define intervals in which to perform the local
fits to Gaussians and double logistic functions (see section 3.9).

3.6 Adaptive Savitzky-Golay filtering

One way of smoothing data and suppressing disturbances is to use a filter, and replace each
data value yi, i = 1, . . . , N by a linear combination of nearby values in a window

n∑
j=−n

cjyi+j . (5)

In the simplest case, referred to as a moving average, the weights are cj = 1/(2n+ 1), and
the data value yi is replaced by the average of the values in the window. The moving average
method preserves the area and mean position of a seasonal peak, but alters both the width
and height. The latter properties can be preserved by approximating the underlying data
value, not by the average in the window, but with the value obtained from a least-squares
fit to a polynomial. For each data value yi, i = 1, 2, . . . , N we fit a quadratic polynomial
f(t) = c1+ c2t+ c3t

2 to all 2n+1 points in the moving window and replace the value yi with
the value of the polynomial at position ti. The procedure above is commonly referred to as
a Savitzky-Golay filter (Press et al. 1994). To account for the negatively biased noise, the
fitting is done in multiple steps as described in the previous section. The result is a smoothed
curve adapted to the upper envelope of the values in the time-series.
The width, n, of the moving window determines the degree of smoothing, but it also affects
the ability to follow a rapid change. In Timesat the width n can be set by the user. Even if
the global setting of the moving window works fairly well, it is sometimes necessary to locally
tighten the window. To capture the corresponding sudden rise in data values, only a small
window can be used. In the program, the Savitzky-Golay filtering is performed using the
global value n of the window. The filtered data are then scanned. If there is a large increase

17

or decrease in an interval around a data point yi, this data point will be associated with a
smaller window. The filtering is then redone with the new locally adapted size of the window.
The adaptive procedure, which is unique to Timesat, is illustrated in Fig. 8.

(a)

0 20 40 60 80 100
125

130

135

140

145

150

155

160

165

170

time (decades)

sc
al

ed
 N

D
V

I

(b)

0 20 40 60 80 100
125

130

135

140

145

150

155

160

165

170

time (decades)

sc
al

ed
 N

D
V

I

Figure 8: In (a) the filtering is done with n = 5, which is too large for the filtered data to
follow the sudden increase and decrease of the underlying data values. A scan of the filtered
data identifies the data points for which there are large increases or decreases in surrounding
intervals. Setting n = 3 for these points and redoing the filtering gives the curve in (b). Note
the improved fit at the rising edges and at the narrow seasonal peaks.

3.7 Fits to asymmetric Gaussians and double logistic functions

In these two methods local model functions are fit to data in intervals around maxima and
minima in the time-series. The local model functions have the general form

f(t) ≡ f(t; c,x) = c1 + c2 g(t;x), (6)

where the linear parameters c = (c1, c2) determine the base level and the amplitude. The
non-linear parameters x = (x1, x2, . . . , xp) determine the shape of the basis function g(t;x).
To make sure that the function space spanned by the basis function is physically reason-
able in terms of how fast the function can grow or decline etc. the non-linear parameters
x = (x1, x2, . . . , xp) are restricted in range.

18

Asymmetric Gaussians

In this case the basis function

g(t;x1, x2, . . . , x5) =

exp

[
−
(
t− x1
x2

)x3
]

if t > x1

exp

[
−
(
x1 − t

x4

)x5
]

if t < x1

(7)

is a Gaussian type of function. For this function x1 determines the position of the maximum
or minimum with respect to the independent time variable t, while x2 and x3 determine the
width and flatness (kurtosis) of the right function half. Similarly, x4 and x5 determine the
width and flatness of the left half. The effects of varying the parameters x2, . . . , x5 are shown
in Figure 9.

(a)

time

sc
al

ed
 N

D
V

I

(b)

time

sc
al

ed
 N

D
V

I

Figure 9: Effect of parameter changes on the local functions. In (a) the parameter x2, which
determines the width of the right function half, has been decreased (solid line) and increased
(dashed line) compared to the value of the left half. In (b) the parameter x3, which determines
the flatness of the right function half, has been decreased (solid line) and increased (dashed
line) compared to the value of the left half.

In order to ensure smooth shapes of the model functions, consistent with what is observed for
data, the parameters x2, . . . , x5 are restricted in range. For example, x3 and x5 are assumed to
be larger than 2 in order to avoid a cusp at the matching point t = x1 of the Gaussian function.

Double logistic functions

Here the basis function

g(t;x1, ..., x4) =
1

1 + exp

(
x1 − t

x2

) − 1

1 + exp

(
x3 − t

x4

) (8)

is a double logistic function. x1 determines the position of the left inflection point while x2
gives the rate of change. Similarly x3 determines the position of the right inflection point
while x4 gives the rate of change at this point. Also for this function the parameters are
restricted in range to ensure a smooth shape.

19

time

sc
al

ed
 N

D
V

I

x
3
 gives right inflection point

x
1
 gives left inflection point

Figure 10: In the double logistic function x1 determines the position of the left inflection point
while x2 gives the rate of change. Similarly x3 determines the position of the right inflection
point while x4 gives the rate of change at this point.

3.8 Separable non-linear least-squares fits

The asymmetric Gaussian and double logistic model functions are well suited for describing
the shape of the time-series in overlapping intervals around maxima and minima. Given a set
of data points (ti, yi), i = n1, . . . , n2 in an interval around a maximum or a minimum, the
parameters c and x are obtained by minimizing the merit function

χ2 =

n2∑
i=n1

[wi(f(ti, c,x)− yi)]
2 . (9)

The function depends linearly on c and non-linearly on x. In Timesat the minimization
is done using a separable Levenberg-Marquardt method (Madsen et al. 2002; Nielsen 1999,
2000), where the box constraints on the non-linear parameters are enforced by projecting
onto the feasible parameter interval (Kanzow et al. 2002). Initial values of the non-linear
parameters are obtained by looping through a number of pre-defined model functions in a
highly efficient search routine. The fitting is done in steps, as described in section 3.4, to
account for the negatively biased noise.

3.9 Merging of local functions

The local model functions describe sensor data very well in broad intervals around maxima
and minima (the location and length of the intervals depend on whether we have one or two
annual seasons, see section 3.5). At the limbs, however, the fits are less good. Denoting the
local functions describing the time-series in intervals around the left minimum, the central
maximum and the right minimum by fL(t), fC(t), and fR(t) (see Figures 11(a-c)), the global

20

function F (t), that correctly models the time-series in the full interval [tL, tR], is

F (t) =

{
α(t)fL(t) + [1− α(t)]fC(t), tL < t < tC

β(t)fC(t) + [1− β(t)]fR(t), tC < t < tR.
(10)

Here α(t) and β(t) are cut-off functions that in small intervals around (tL + tC)/2 and (tC +
tR)/2, respectively, smoothly drop from 1 to 0. Loosely speaking, the global function F (t),
shown in Figure 11(d), assumes the character of fL(t), fC(t) and fR(t) in, respectively, the
left, central and right part of the interval [tL, tR]. The merging of local functions to a global
function is a key feature of the method. It increases the flexibility and allows the fitted
function to follow a complex behavior of the time-series (Jönsson and Eklundh, 2002).

(a)

0 20 40 60 80 100
140

150

160

170

180

190

200

210

time (decades)

sc
al

ed
 N

D
V

I

f
L
(t)

t
L

(b)

0 20 40 60 80 100
140

150

160

170

180

190

200

210

time (decades)

sc
la

ed
 N

D
V

I

t
C

f
C

(t)

(c)

0 20 40 60 80 100
140

150

160

170

180

190

200

210

time (decades)

sc
al

ed
 N

D
V

I

t
R

f
R

(t)

(d)

0 20 40 60 80 100
140

150

160

170

180

190

200

210

time (decades)

sc
al

ed
 N

D
V

I

F(t)

Figure 11: (a-c) display local model functions fitted to, respectively, the left minimum, the
central maximum, and the right minimum. (d) shows the global model function that is obtained
by merging the three local functions.

3.10 Seasonal trend decomposition

Trend decomposition is implemented in the STL method (Seasonal Trend decomposition by
LOESS, Cleveland et al. 1990). This is a method based on a locally weighted regression
smoother (LOESS), generating an output consisting of a non-linear trend line, a seasonal

21

component, and a remainder (residual). In Timesat it is possible to generate the trend and
the seasonal component (Figure 12) and write these to output files. The remainder is used
in the outlier detection used for pre-processing (section 3.3). The trend component can be
used as input in trend segmentation (Verbesselt et al. 2010, Jamali et al. 2015), and the
seasonal component provides a generalized seasonal profile for the time-series. In Timesat
it is possible to extract all seasonality parameters for the STL seasonal component, however,
note that these are generally less accurate than those obtained from Savitzky-Golay filtering,
asymmetric Gaussian or double-logistic functions.

1 37 73 109 145 181 217 253 289 325 361
Time

120

130

140

150

160

170

180

190

D
at

a

Figure 12: Time series decomposed into seasonal component (gray solid line), and trend
(dashed line).

22

4 Extraction of seasonality parameters

Phenology is the response of the vegetation to seasonal climatic cycles in irradiance, temper-
ature and rainfall. Therefore phenology constitutes an essential land surface parameter in
atmospheric and climate models. However, the seasonal patterns observed in satellite-derived
time-series data may also be affected by other cyclic and non-cyclic effects. Hence, we will
use the term seasonality when describing these annually occurring events. Furthermore, sea-
sonality parameters obtained from satellite derived time-series are often affected by the high
degree of noise in the data. Using fitted functions reduces the uncertainties and leads to more
stable measures.

4.1 Seasonality parameters derived from time-series spanning n years

Consider a time-series with one growing season per year. During a period of n years there
may, in the general case, be n− 1 full seasons together with two fractions of a season in the
beginning and end of the time-series. Using the fitted functions seasonality parameters can
be extracted for each of the n − 1 full seasons (see Figure 13). If there are n seasons that
each peaks in the middle of a year it would in principle be possible to extract seasonality
parameters from each of the years (see for example Figure 5b). However, to be generally
applicable, Timesat is not programmed for this, but will extract seasonality data only for
the n − 1 center-most seasons! To overcome this the user may add one year of dummy data
in the beginning and one at the end of the time-series (see section below).

0 20 40 60 80 100 120 140 160 180
140

160

180

200

220

240

260

time (decades)

sc
al

ed
 N

D
V

I

Figure 13: Time-series covering a period of 5 years. Only seasonality parameters from the
4 full seasons can be determined from fitted functions. The start and end of the seasons are
marked with filled circles.

4.2 Extracting seasonality parameters from one year of data

If the vegetation season peaks around the middle of the time-series it is, in principle, possible
to extract seasonality parameters from only one year of data. As discussed above, Timesat
does not handle this case. To overcome this problem the user can duplicate the time-series and
make an artificial time-series spanning three years (see Figure 14). The seasonality parameters

23

extracted from the middle season of this artificial time-series are the desired ones. Note that
this trick can only be used when the season peaks in the middle of the time-series.

10 20 30 40 50 60 70 80 90 100 110
0

5

10

15

20

25

time (decades)

sc
al

ed
 N

D
V

I

Figure 14: To extract seasonality parameters from one year of data the time-series has been
duplicated to span three years.

4.3 Defining start and end of season

In Timesat 3.3 four methods are used for determining when the seasons start and end. (1)
The first method is based on the seasonal amplitude, defined between the base level and the
maximum value for each individual season. The start occurs when the left part of the fitted
curve has reached a specified fraction of the amplitude, counted from the base level. The end
of season is defined similarly, but for the right side of the curve. (2) In the second method,
the start/end of season occurs when the curve has reached an absolute value, defined in the
units of the data. (3) The third method is based on the relative amplitude for the whole time
series. This amplitude is calculated as the difference between the robust mean maximum and
the robust mean base level (the means of values when excluding the 10 % lowest and highest
values). The start/end occur when the curve has reached a specified fraction of this relative
amplitude. In contrast to method 1, this method will generate start/end vegetation index
values that are identical for all seasons of a point (pixel), however, the value can vary between
different points (pixels). (4) In the fourth method the start/end occur when the curve crosses
the STL trend line. The methods are illustrated in Figure 15. The choice of method and
threshold values depends on the vegetation index used, the biological threshold chosen (e.g.
start of season defined as leaf area index exceeding a certain value), and how this threshold
translates into a vegetation index value or fraction of amplitude for the studied vegetation
type.

24

145 169 193 217 241 265 289 313

Time

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

D
at

a

Seasonal amplitude

145 169 193 217 241 265 289 313
Time

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

D
at

a

Absolute value

145 169 193 217 241 265 289 313

Time

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

D
at

a

Relative amplitude

145 169 193 217 241 265 289 313

Time

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

D
at

a

STL trend

Raw data
STL fit
STL trend
Gaussian

Figure 15: Four methods for determining beginning and end of seasons. From the top: 1)
Seasonal amplitude = 0.3. 2) Absolute value = 0. 3) Relative amplitude = 0.3; horizontal
lines denote robust mean maximum and base level. 4) Crossing of the STL trend curve (STL
fits drawn).

25

4.4 Extracted seasonality parameters

In the current version of Timesat a number of key seasonality parameters such as the time of
the start and end of the season, the largest value, and the amplitude are computed for each
of the full seasons in the time-series. Some of these parameters are displayed in Figure 16.
The use of the fitted function gives more stable measures, where effects of noise have been
reduced. To rule out errors a number of checks on consistency of the parameters are done.
Please note, once again, that a time-series spanning n years will give seasonality
parameters for the n− 1 center-most seasons.
Below are definitions of all the extracted seasonality parameters. There are of course no unique
definitions of seasonality parameters and different researchers may argue for different ways
of extracting and validating these parameters. However, the importance of these parameters
lies in the possibility to map out spatial or temporal changes in the vegetation cover resulting
from climatic or land use changes.

Figure 16: Figure 1. Some of the seasonality parameters generated in TIMESAT: (a) beginning
of season, (b) end of season, (c) length of season, (d) base value, (e) time of middle of season,
(f) maximum value, (g) amplitude, (h) small integrated value, (h+i) large integrated value.
This figure is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 2.5
Sweden License. It is free to copy and use in other work.

1. time for the start of the season; time for which the left edge has increased to a user
defined level (often a certain fraction of the seasonal amplitude) measured from the left
minimum level.

2. time for the end of the season; time for which the right edge has decreased to a user
defined level measured from the right minimum level.

3. length of the season; time from the start to the end of the season.

4. base level; given as the average of the left and right minimum values.

26

5. time for the mid of the season; computed as the mean value of the times for which,
respectively, the left edge has increased to the 80 % level and the right edge has decreased
to the 80 % level.

6. largest data value for the fitted function during the season; may occur at a
different time compared with 5.

7. seasonal amplitude; difference between the maximum value and the base level.

8. rate of increase at the beginning of the season; calculated as the ratio of the
difference between the left 20 % and 80 % levels and the corresponding time difference.

9. rate of decrease at the end of the season; calculated as the absolute value of the
ratio of the difference between the right 20 % and 80 % levels and the corresponding time
difference. The rate of decrease is thus given as a positive quantity.

10. large seasonal integral; integral of the function describing the season from the season
start to the season end. Note that the large integral has no meaning when part of the
fitted function is negative.

11. small seasonal integral; integral of the difference between the function describing the
season and the base level from season start to season end.

12. value for the start of the season; value of the function at the time of the start of the
season.

13. value for the end of the season; value of the function at the time of the end of the
season.

5 Aspects of processing

There are many aspects of data processing for achieving optimal results. One aspect is to
choose the best method, Savitzky-Golay, asymmetric Gaussian or double logistic, for a given
data set. Another aspect is to fine tune the program settings guiding the processing. Below
we will in broad terms discuss the characteristics of the different methods implemented in
Timesat. After that we will go on to discuss the settings in detail.

5.1 Characteristics of the processing methods

In Timesat the user can choose between adaptive Savitzky-Golay filtering and fits to asym-
metric Gaussians and double logistic functions. In contrast to functions resulting from Fourier
methods, the resulting functions in Timesat are local in the sense that they are able to cap-
ture inter-annual changes, i.e. changes in seasonal timing between years. This property makes
them suitable for studying vegetation dynamics.
To reduce the influence of clouds and atmospheric constituents satellite derived time-series
are often maximum-value composites (MVC), where the largest value in a defined period,
e.g. 10-day period (decade), is selected to represent the period. The time-series are thus, in a
strict meaning, not evenly sampled. Most processing methods ignore the effects of this uneven

27

sampling. The methods implemented in Timesat are all based on least-squares fits and it is,
in principle, possible to process time-series that are unevenly sampled using the time stamp
associated with the MVC. This feature is however not implemented in the current version of
Timesat. Instead all time-series are treated as if they were sampled at an even rate.
The different processing methods in Timesat have different strengths and weaknesses. For
comparatively smooth time-series the three different processing methods often give very sim-
ilar results, and which one to use should be carefully tested using the graphical interface in
Timesat (see section 9.4). If the time-series is smooth, but with a plateau indicating that
the underlying signal is composed of two vegetation signals, then the more local Savitzky-
Golay filter is the preferred method (Jönsson and Eklundh 2003). For noisy time-series the
Savitzky-Golay method sometimes yields undesirable results. In these cases fits to the asym-
metric Gaussians or double logistic functions may be the better choice. The final choice of
methods depends on the character of the input data and has to be decided by inspecting how
well the fitted functions match the original data.
The performance of different processing methods have been evaluated in a study by Hird and
McDermid (2009). The conclusion is that the methods in Timesat are highly competitive
and that they to a great extent preserve the signal integrity.

5.2 Controlling the processing: input settings

The processing in Timesat is controlled by a number of settings. Depending on these set-
tings, such as degree of adaptation to the upper envelope or, in the case of Savitzky-Golay
filtering, the size of the moving window, the results may be very different. Here we list the
input settings. Settings are read from a settings file (*.set), that can be edited by hand or
manipulated by the program TSM_settings (see section 9.5). The settings can also be gener-
ated with the Timesat graphical user interface (GUI). The GUI allows the user to actively
experiment with the settings to find the optimal combination for the time-series at hand. The
settings in the GUI are then transferred to the settings file (*.set). The GUI and how to
use it to process different types of data is discussed at length in section 9.4 in Part III of this
document. A detailed description of each setting is given in the next section. Please note
that the settings file format is new in version 3.3.

28

Row Example Short description Explanation
1 Version: 3.3 Keeps track of the settings file version
2 west_africa Job name Job name (no blanks) - max 100 chars.

This will determine the name of output
files from Timesat

3 1 Image/series mode (1/0) 1 = image mode, 0 = ASCII time-series
4 0 Trend (1/0) 1 = STL trend fitting activated.

Overrules choice of fitting method (row 32).
5 1 Use quality data (1/0) 1 = use quality data, 0 = do not use

quality data
6 datalist.txt Data file list/name Name, followed by %, of file list (for

images) or data file name (for ASCII data).
7 quallist.txt Quality file list/name Name, followed by %, of quality list (for

images) or quality file name (for ASCII data)
8 1 Image file type 1 = 8-bit unsigned integer, 2 = 16-bit

signed integer, 3 = 32-bit real
9 0 Byte order (1/0) 0 = little endian byte order, 1 = big

endian byte order (for 16-bit integers)
10 200 200 Image dimension No. of rows in image, and no. of

columns per row
11 111 120 91 100 Processing window Window to process (start row, end row,

start column, end column)
12 3 36 Years and points per year No. of years and no. of points per year
13 1 255 Valid data range Lower and upper data values for valid

range. Data outside range will be
assigned weight 0

14 1 12 0.1 Quality range 1 and weight Lower and upper values for quality
class 1 and assigned weight

15 13 22 0.5 Quality range 2 and weight Lower and upper values for quality
class 2 and assigned weight

16 23 31 1 Quality range 3 and weight Lower and upper values for quality
class 3 and assigned weight

17 0 Amplitude cutoff value Cutoff for low amplitude. Series with
amplitude smaller than this value will
not be processed. 0 processes all data

18 0 Debug (3/2/1/0) Debug flag. 1 - 3 = print debug data,
0 = do not print debug data

19 1 1 0 Output files (1/0 1/0 1/0) Flags for output data (seasonality,
fitted data, and original data)

20 0 Use land cover (1/0) 1 = use land cover map, 0 = do not use
land cover map

21 landcoverdata Name of land cover file Name, followed by %, of land cover file

29

22 1 Spike method (3/2/1/0) Spike method. 3 = weights from STL
multiplied with original weights,
2 = weights from STL,
1 = method based on median filtering,
0 = no spike filtering

23 2 Spike value If spike method = 1 the spike value
determines the degree of spike removal.
A low value will remove more spikes

24 0 STL stiffness value Parameter for STL trend stiffness.
Varies between 1.0 and 10.0; default = 3.0.

25 2 No. of land cover classes No. of land cover classes (if land
cover data are used)

26 ************ Separator After separator comes class specific
parameters

27 1 Land cover code for class 1 Land cover code for class 1
28 1 Seasonality parameter (0-1) A value near 1 will attempt to fit one

season per year, a value close to zero
will attempt to fit two seasons

29 3 No. of envelope iterations No. of iterations for upper envelope
(3/2/1) adaptation (3,2,1). Choosing 1 means no

envelope adaptation.
30 2 Adaptation strength (1-10) Strength of the envelope adaptation.

10 is the maximum strength
31 0 0 Force to minimum (1/0) and Force to minimum. 1 = points below

value of minimum given minimum value will be forced to
the specified minimum value. 0 = no
forcing to value

32 3 Fitting method (3/2/1) Fitting method. 3 = double logistic, 2 =
asymmetric Gauss, 1 = Savitzky-Golay
If STL trend fitting activated (row 4)
this overrides the fitting method.

33 1 Weight update method Weight update method (not in use)
34 4 Window for Savitzky-Golay Half window for Savitzky-Golay filtering.

A large value of the window will give
a high degree of smoothing

35 0 Reserved Not in use
36 0 Reserved Not in use

30

37 1 Season start start/end Method for determining start/end of
method (4/3/2/1) season based on intersection of the

fitted curve. 4 = STL trend: at the
intersection with the trend line from
STL. 3 = Relative amplitude: at the
point where the curve intersects a
proportion of the relative seasonal
amplitude. 2 = Absolute value: at the
point where the curve intersects an
absolute value in units of the data.
1 = at the point where the curve
intersects a proportion of the
seasonal amplitude.

38 0.5 0.5 Season start / end values Values for determining season start/end
If start method is 1 or 3 the values
must be between 0 and 1

39 – Separator and data Same as rows 26–38, but for class 2
51 for class 2
52 – Separator and data Same as rows 26–38, but for class 3
64 for class 3
· · · · · · · · · etc. for a maximum of 255 classes

31

5.3 Description of input settings

For convenience the settings file has the same input entries independent of whether we process
sequential data in an ASCII file or data in image files. If, for example, we process sequential
data in an ASCII file not all entries are actually used. For entries that are not needed dummy
values in the correct format should be given. Having the same input entries make it easier
to edit the input file. It is possible to add comments at the end of each row, indicating the
meaning of each setting. An example of a settings file can be found in the sample data (see
section 7.2).

Row 1, Version: 3.3

Row 2, Job name
Character string that will be used to label output files from Timesat.

Row 3, Image/series mode (1/0)
1 = image mode, 0 = ASCII file with time-series.

Row 4, Trend (1/0)
1 = STL trend fitting activated. Overrules choice of fitting method (row 32).

Row 5, Use quality data (1/0)
1 = use quality data, 0 = do not use quality data. As described in section 3.2 quality data
consists of numbers that can be translated into weights.

Row 6, Data file list/name
Running in image mode the user should prepare a file that on the first row gives the total
number N of vegetation index images and then the path and name of each of the N images
(compare figure 3). The structure of the file is shown below

N
path\imagename_1
path\imagename_2
....

path\imagename_N

The name, followed by %, of the so prepared file should be supplied on row 6. Running
sequential data the user should instead give the name of the ASCII file containing this data.
The structure of the ASCII file is specified in section 2.1.

Row 7, Quality file list/name
Relevant if quality data are used (specifications on rows 14–16). Running in image mode the
user should prepare a file that on the first row gives the total number N of quality images
and then the paths and names of the quality images. The file has the same structure as the
file listing vegetation index images. The name, followed by %, of the prepared file should be
supplied on row 7. Running sequential data the user should specify the ASCII file containing
the quality data. If quality data are not used the user should simply input any dummy name.

Row 8, Image file type
Relevant if in image mode. Please specify the data types of the images where 1 = 8-bit
unsigned integer, 2 = 16-bit signed integer, 3 = 32-bit real (see also section 10.15). If not in
image mode the user may simply input the value 0.

32

Row 9, Byte order (1/0)
Relevant if in image mode. Please specify the byte order where 0 = little endian byte order,
1 = big endian byte order (for 16-bit signed integers). If not in image mode the user may
simply input the value 0.

Row 10, Image dimension
Relevant only in image mode. In this case the first number gives the number of rows in the
images and the second number the number of columns. If not in image mode the user may
simply input the numbers 0 and 0.

Row 11, Processing window
Relevant only in image mode. Four integers should be supplied giving start row, end row,
start column, and end column for the area to be processed. If not in image mode the user
may simply input four zeros.

Row 12, Years and points per year
Input the number of years a time-series is spanning and also the number of points per year.
There are some checks to see that numbers are consistent with other data. For example the
product of the years and the number of points per year should be equal to the number N of
supplied images on rows 6 and 7.

Row 13, Valid data range
Specify lower and upper data range. Data outside the specified range will be assigned weight 0.
By choosing these values carefully one may for example avoid that water pixels are processed.

Rows 14 – 16, Quality range and weight
Relevant if quality data are used. Remotely sensed data often come with some cloud clas-
sification or other quality indicator representing broad quality classes (see section 3.2). The
quality indicators in each class are transformed into weights, determining the importance of
the associated data values in the least-squares fits. In row 14 the user should supply lower
and upper values for quality class 1 and the assigned weight. In row 15 the user should supply
lower and upper values for quality class 2 and the assigned weight Finally, in row 16 lower
and upper values for quality class 2 and the assigned weight should be given. If quality data
are not used one may input three zeros in each of rows 14, 15, and 16. Three quality classes
are used in Timesat.

Row 17, Amplitude cutoff value
Cutoff for amplitude. Time-series with smaller average amplitude than the cutoff will not be
processed. Useful for excluding areas with minimal seasonal variation, e.g. deserts. Set to 0
to process all data.

Row 18, Debug (0-3)
Debug flag. 0 = do not print debug data (recommended); 1 = print certain debug parameters
to the screen; 2 = print certain debug parameters to file debug2_jobname; 3 = if a crash
occurs the position of the problematic time-series as well as the time-series itself is written to
debug3_jobname.

Row 19, Output files (1/0 1/0 1/0)
Flags for output data. The first flag determines if seasonality data should be printed or not,
the second flag determines if fitted functions should be printed, and finally the third flag

33

determines if the original time-series should be printed or not.

Row 20, Use land cover (1/0)
1 = use land cover map, 0 = do not use land cover map. Relevant only in image mode.
Processing an ASCII file the user may simply supply the value 0. More information is given
in section 9.1.

Row 21, Name of land cover file
Name and path of the land cover file. If a land cover map is not used the user may supply
a dummy name. The name should be followed by %. The landcover file must have the same
format and dimensions as the input image files.

Row 22, Spike method (3/2/1/0)
There are three different methods implemented to detect spikes in data and set corresponding
weights to zero. 3 = weights from STL-decomposition (the full time-series is divided into a
seasonal- and a trend component, data values that do not fit this pattern are assigned low
weights, see Cleveland et al. 1990 for detailed information) multiplied with original weights,
2 = weights from STL-decomposition. 1 = method based on median filtering as described in
section 3.3. 0 = no spike detection.

Row 23, Spike value
Relevant only if spike method 1 is used. Data values that differ from the median value by
more than the spike value multiplied with the standard deviation of y and that are different
from the left and right neighbors are removed (assigned weight 0). A normal setting of the
spike value is 2. A lower spike value will remove more data values, some of which may be
correct. If spike method 1 is not used the user can supply any value.

Row 24, STL stiffness value
This value regulates the stiffness of the STL trend variable. The default is 3.0. A smaller
value decreases stiffness, and a larger value increases stiffness.

Row 25, No. of land cover classes
Number of land cover classes. Relevant only if a land cover map is used. If a land cover map
is not used the user may put 1 in this entry.

Row 26, Separator
This row contains a separator. On the rows following the separator parameters are given that
are specific to each land cover class. If no land cover map is used all time-series will be treated
as belonging to the first class.

Row 27, Land cover code for class 1
Land cover code for class 1. Time-series for all pixels in the image with this land cover code
will be processed with the parameter settings in rows 28–38. If there is no land cover file
or if processing sequential data in an ASCII file all time-series will be processed with the
parameter settings in rows 28–38, i.e. as if they belonged to land cover class 1.

Row 28, Seasonality parameter
This parameter guides how the secondary maximum in the determination of the number of
seasons is treated (see section 3.5). A value 1 of the parameter will force the program to treat
all data as if there is one season per year. A small value of the parameter will attempt to
fit two seasons a year. If there are images covering areas with both one and two vegetation

34

seasons, as may be the case for images on continental scale, it is advisable to separate these
areas in two different land cover classes using a high value of the seasonality parameter for
the class with one vegetation season and a low value for the class with two vegetation seasons.

Row 29, No. of envelope iterations
The function fits can be made to approach the upper envelope of the time-series in an iterative
procedure (see section 3.4). Specifying 1 for the number of envelope fits there is only one fit
to data and no adaptation to the envelope. Specifying 2 or 3 there are, respectively, one and
two additional fits where the weights of the values below the fitted curve is decreased forcing
the fitted function toward the upper envelope.

Row 30, Adaptation strength
The adaptation strength is a number between 1 and 10 indicating the strength of the upper
envelope adaptation. 10 gives the strongest adaptation to the upper envelope and 1 gives no
adaptation. Strong adaptation, especially combined with 3 envelope iterations, may put too
much emphasis on single high data values leading to bad results. The adaptation strength
needs to be fine tuned for given data, but a normal adaptation value is around 2 and 3.

Row 31, Force to minimum (1/0) and value of minimum
At northern or southern latitudes time-series may during the dark season be affected by high
sun zenith angles and/or pertinent clouds, giving unphysically low values during long periods
of time. In these cases it may sometimes be useful to force the fitted function to a user spec-
ified minimum (or off-season) value. This is done by giving 1 for the first entry followed by
the minimum value. If the user specifies 0 for the first entry there will be no forcing to the
minimum value.

Row 32, Fitting method (3/2/1)
Indicate fitting method. 3 = double logistic function, 2 = asymmetric Gaussian, 1 = Savitzky-
Golay filtering. Which method to use is determined by the properties of the time-series (com-
pare discussion in section 5.1). Different methods can be used for different land cover classes.
If STL trend fitting is activated (row 4), this overrides the fitting method setting.

Row 33, Weight update method
Weight update method; not in use. The user may simply input 1.

Row 34, Window size for Savitzky-Golay
If Savitzky-Golay filtering is used (see section 3.6) the half-window n needs to be set. This
integer value should be seen in relation to the total number data values during the year. A
rough guide value is around floor(nptperyear/4). A large value of the window gives a high
degree of smoothing, but affects the possibility to follow a rapid change in data in the begin-
ning of the growth season.

Row 35, Reserved
Reserved for future use. The user should supply the value 0.

Row 36, Reserved
Reserved for future use. The user should supply the value 0.

Row 37, Season start/end method (4/3/2/1)
Method for defining the start/end of seasons (see further explanations in section 4.3). 4 =
STL trend, 3 = relative amplitude, 2=absolute value, 1=seasonal amplitude. For methods 3,

35

2 and 1 the threshold values for start and end respectively are specified on row 38.

Row 38, Season start/end values
For start / end methods 3 and 1 please supply the threshold values as a proportion of ampli-
tude, ranging between 0 and 1. For method 2 specify absolute values in data units. Not used
for method 4 (supply any values).

Rows 39 – 51, Data for class 2
Same information as on rows 26 – 38 (including the separator) etc.

6 Output data

Depending on the input parameter settings Timesat outputs files containing: original (raw)
time-series read from the ASCII files or extracted from the images, time-series from fitted
functions, determined seasonality parameters, and debug information. We start to discuss
the output files resulting from processing image data (see section 2.2). Output files obtained
by processing ASCII files (see section 2.1) can be seen as a special case and are treated at the
end of this section.

6.1 Files with time-series: *.tts

The file with the original (raw) time-series copied from the images has the name jobname_raw.tts.
In a similar way the file with the time-series constructed from the fitted functions has the
name jobname_fit.tts, where jobname is the name given in the beginning of a run. Both
files are binary and data are organized according to Figure 17. In the files nyears, nptperyear,
rowstart, rowstop, colstart, colstop are integers specifying, respectively, the number of years
spanned by the time-series, the number of data values in one year, and the area in the image
that has been processed. Finally, row, col specifies the position of the time-series in the image.
The above integers are written in the format int32. The time-series y1, y2, . . . , yN for each
of the pixels (row, col) in the area are written in single precision real*4. Data are given by
row meaning that the column index varies faster than does the row index.

nyears nptperyear rowstart rowstop colstart colstop

row1 col1

y1 y2 y3 . . . yN−1 yN

row2 col2

y1 y2 y3 . . . yN−1 yN
...

rowM colM

y1 y2 y3 . . . yN−1 yN

Figure 17: Data structure of binary files (*.tts) containing raw time-series and time-series
from fitted functions. The first line of the file gives information about the number of years
spanned by the time-series, nyear, the number of data values per year, nptperyear, and the

36

spatial extension of the area.

The time-series files can be read by the program TSM_viewfits (see sections 9.8 and 10.13),
and it is possible to step forward in the file and check the Timesat fits pixel by pixel.

6.2 Files with seasonality parameters: *.tpa

The file with the extracted seasonality parameters has the name jobname_TS.tpa. The data
structure of the file is displayed in Figure 18. The integers nyears, nptperyear, rowstart,
rowstop, colstart, colstop, row, col have the same meaning as above. The integer n gives the
number of full seasons for which seasonality information has been determined. The seasonality
parameters p1, p2, . . . , p13 (cf. section 4.4) are written in single precision real*4.

nyears nptperyear rowstart rowstop colstart colstop

row1 col1 n1
p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13
p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13

...
p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13

n1 lines with values

one line per season

row2 col2 n2
p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13
p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13

...
p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13

n2 lines with values

one line per season

...
rowM colM nM
p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13
p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13

...
p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13

nM lines with values

one line per season

Figure 18: Data structure of binary files jobname_TS.tpa containing seasonality parameters
extracted from the fitted functions. The first line of the file gives information about the number
of years spanned by the time-series, nyear, the number of data values per year, nptperyear,
and the spatial extent of the area. For each pixel (row, col) in the area seasonality parameters
are given for the specified number of seasons.

The data are given by row meaning that the column index varies faster than does the row
index: first comes data for all columns belonging to the first row, then comes data for all
columns for the second row etc.

37

6.3 Files with output from STL trend analysis

Two types of files with fitted data from the STL smoothing are generated when the option
for trend analysis is chosen: jobname_STLfit.tts, containing the seasonal component of the
STL fit, and jobname_STLtrend.tts, containing the trend line of the STL fit. In addition
the file jobname_STL.tpa is generated, containing seasonality parameters for the seasonal
component. The formatting of these files are identical to the .tts and .tpa files described in
6.1 and 6.2.

6.4 Extracting images of seasonality parameters

The timings of seasons do not always follow the calender year. For example a vegetation
season may start in October, peak in December, and fall off in March the following year. To
generate images of seasonality parameters e.g. vegetation amplitude for this season from the
file with seasonality parameters, a time window containing the season must be defined (see
Figure 19). One searches the seasonality file by looping over the pixels. For each pixel there
is then a loop over all the seasons. The season falling in the time window is the desired one
and the seasonality parameter is extracted for this season and written to the image file. The
algorithm for generating an image file can be described as follows:

1. Give spatial extension of the area

2. Give the time window for the season

3. Specify which seasonality parameter should be displayed

4. Loop over pixels (row, col) in the defined area

5. For each pixel loop over the seasons

(a) Read seasonality parameters for the season
(b) If the peak value of the season is within the specified time window, write the value

of the specified seasonality parameter to the image file. Note that from version 3.3
the peak value of the season is used rather than the start and end of the season.
This reduces the risk of missing the season entirely.

6. Display image file

The user is advised to make the time window large enough to allow for a certain variation
in the start and end of the season over the processed area. The extraction of images is done
using the program TSF_seas2img (see section 9.8).

6.5 Output files from ASCII data

The format and structure of output files from runs with time-series given in ASCII files (see
section 2.1) are the same as the format and structure of output files from runs where the
time-series are extracted from a sequence of one-column images. Thus for the output files col
is always 1 and row specifies the sequential number of the time-series in the ASCII file. Also,
for output files from runs with time-series given in ASCII files rowstart = 1, rowstop = nts,
colstart = colstop = 1, where nts is the number of time-series in the ASCII file.

38

0 20 40 60 80 100 120 140 160 180
140

160

180

200

220

240

260

time (decades)

sc
al

ed
 N

D
V

I

Figure 19: To extract information from the seasonality file for a specific season a time window
must be defined. The season for which the maximum of the season lies within the window is
the desired one.

6.6 Index files: *.ndx

Timesat generates index files that allow for faster access of the output data files. The output
files can be very large, and the index files can considerably speed up access to specific locations.
This is particularly noticed when plotting data using e.g. the routines TSM_printseasons and
TSM_viewfits. The index files have the extension .ndx, and have the following formats: For
files with time series (*.tts):

row1 col1 loc1
row2 col2 loc2

rown coln locn

where row and col are the pixel locations containing data in the .tts file, and loc is the
location of the beginning of the row/col numbers in bytes from the beginning of the .tts file.
row, col and loc are double integers (int64).

For files with seasonality data (*.tpa):

row1 col1 nseas1 loc1
row2 col2 nseas2 loc2

rown coln nseasn locn

where row, col are pixel numbers, nseas is the number of seasons for this pixel, and loc is
the location of the beginning of the row/col numbers in bytes from the beginning of the .tpa
file. row, col, nseas and loc are double integers (int64).

39

Part III
Software User’s Guide

40

7 Installation of TIMESAT and program structure

7.1 System requirements

The Timesat package consists of routines developed in Matlab and Fortran. It has been de-
veloped under Windows and tested also under Linux. Graphically, there are small differences
between the two operating systems, but functionally not. The programs allocate memory
dynamically, and very large data sets can be processed. An exception is the module TSM_GUI
that loads all requested data at once and thus may experience memory limitations. To serve
users that do not have Matlab, we are supplying a compiled version of the Matlab routines
that run directly under Windows and Linux. The Fortran programs are also pre-compiled,
and executables are available both for Windows and Linux.

7.2 Installation

To install Timesat create a directory on the hard drive, as a suggestion with the name
timesat, and unpack the zipped Timesat file in the created directory. The zipped file can
be downloaded from the Timesat homepage. After unpacking the zipped file the following
folders will be present:

Top level Sub-level Contents
timesat33 \compiled Executables for pre-compiled version of Timesat

under Win64 and Linux 64 for users without Matlab
\data Sample data
\data\single Sample data stored in single ASCII files
\data\wa Sample images for West Africa
\documentation Documentation and reprints of articles
\run Optional startup directory for running Timesat

(empty on installation)
\timesat_fortran\main Fortran executables for main processing routines
\timesat_fortran\tools Fortran executables for post-processing routine
\timesat_matlab\main Matlab executables for main processing routines
\timesat_matlab\tools Matlab executables for some GUI routines

Installation for users with Matlab

After starting Matlab, the Timesat Matlab directories need to be appended to the Matlab
Path (use Add with Subfolders in Set Path and select timesat_matlab to include both the
subfolders timesat_matlab\main and timesat_matlab\tools. Timesat, including the For-
tran routines, can then be run from any working directory in Matlab. An example is given in
section 9.6.
If you wish to run any of the Fortran programs standalone (outside the Matlab working
environment) you can copy the executables (*.exe on Windows and *.x64 on Linux) from
timesat_fortran\main and timesat_fortran\tools to your working directory, open a com-
mand window from the working directory, and execute the programs from there by typing

41

their names. Alternatively you must open a command window prompt and append the For-
tran directories to the path before executing them. An example of how to append the DOS
path in the latter case is given in section 9.6.

Installation of pre-compiled version for users without Matlab

We are supplying executable files of Timesat that can run directly under Windows or Linux
without having Matlab installed. These files are contained in the \compiled\Win64 subfolder
for Windows users and /compiled/Linux64 subfolder for Linux users. It is first necessary to
install a runtime engine called the Matlab Compiler Runtime (MCR). Note that the included
version of MCR must matche the compiler version used by us for creating Timesat and that
other versions of MCR may not work. Also note that you will need administrative privileges
on the machine for installing MCR. We do not recommend installing MCR on machines that
already have Matlab installed. Please go to the Matlab Compiler technical reference pages for
more information about MCR. Installation and startup differs between Windows and Linux:

Windows users: Double click on file MCRinstaller.exe found under \compiled\Win64.
You might receive the following message ".NET Framework is not installed. If you require
it, select Cancel and install .NET framework first. Otherwise select OK to continue". You
can just continue the installation by pressing OK. To start Timesat double click on the
file TIMESAT.exe in the \compiled\Win64 folder. You will be asked to supply the name
of the installation folder. Give the name of the folder where Timesat was installed, e.g.
C:\timesat33. In the Timesat menu system use File, Preferences to navigate to your working
directory.

Linux users: Execute the file MCRInstaller.bin found under /compiled/Linux64. This
will install MCR into a folder. Suppose, for simplicity, that the MCR installation folder is
/usr/local/mcr_folder. Invoke, in the /compiled/Linux64 folder, the Timesat shell script
followed by the MCR installation folder

./run_TIMESAT.sh /usr/local/mcr_folder

The shell script sets up the environment and executes Timesat. During the process you will be
asked to supply the name of the Timesat installation folder e.g. /home/username/timesat33.
In the Timesat menu system use File, Preferences to navigate to your working directory.
More information about the Linux installation is given in the file readme.txt in the subfolder
/compiled/Linux64.

8 Program and processing overview

8.1 Processing logic

Timesat consists of several different routines written in Matlab and Fortran. Graphics-
oriented programs are coded in Matlab, and programs for processing large data sets are coded
in Fortran to achieve fastest possible execution. The general logic of the processing is given in
Figure 20 and is briefly explained here. The main processing steps in Figure 18 are described
by numbers in the left margin of the figure:

42

1. Preparation of input data and previewing of binary images. Two types of data are
accepted, ASCII files of single or multiple data series, or full sets of binary images in
time sequence. To view image data the program TSM_imageview is used.

2. Running Timesat for selected image pixels or time-series using the program TSM_GUI.
This allows the user to check the quality of the input data and to select suitable fitting
algorithms and settings for running the full data sets.

3. Creation of an ASCII settings file. This is done with the program TSM_settings, ac-
cessible from TSM_GUI or as a stand-alone program. The settings control how Timesat
treats the input data. Two types of input settings exist: general settings that control
the processing of all pixels, and class-specific settings that control processing for a given
land cover class (cf. sections 5.2 and 5.3).

4. Running Timesat for full data sets using the settings file generated in the previous step.
This is normally done from a command window using the Fortran program TSF_process.
Output data consist of binary files for seasonality data and fitted data, each file con-
taining the result for all input series e.g. all image pixels (cf. sections 6.1 and 6.2).

5. Generation of output images from the Timesat output files. This includes viewing of
seasonality data or fitted data for single pixels and creation of image files of season-
ality and fitted data for given time periods. Several routines are available for these
purposes (cf. section 6.4). For a full description of the processing steps please go to the
appropriate sections in chapter 10.

8.2 Naming convention of programs

Programs coded in Matlab are all given the prefix TSM_ (Timesat Matlab). Programs coded
in Fortran are all given the prefix TSF_ (Timesat Fortran).

8.3 Program versions

Timesat 3.3 was written in Matlab ver. 2016b. Fortran programs were compiled with the
Intel Fortan Compiler XE 12.1 (Windows) and 12.1 (Linux) compiler.

43

Figure 20: General TIMESAT processing logic. The numbers in the left margin describe the
step involved in the data processing. Please refer to the text for further details.

44

9 Getting started with TIMESAT – a quick tutorial

This tutorial describes the general steps involved in the processing of time-series data with
Timesat. The tutorial is meant for getting started with Timesat, and more detailed infor-
mation about the separate functions is given in the reference manual in chapter 10. The
tutorial follows Windows conventions, and Linux users must change the file sep-
arator from \ to /. The sample files for the tutorial are found in the directory \data. The
subfolder \data\wa contains Normalized Difference Vegetation Index (NDVI) data from the
NOAA AVHRR sensor over a window covering a part of West Africa. There are also accom-
panying CLAVR quality data together with a land cover data file landunits.rst with three
broad classes (cf. section 2.2). This data set will be used in the beginning of the tutorial.
The subfolder \single contains single ASCII time-series files for selected areas in Africa and
Sweden. The file MODIS_NDVI_Sweden.txt covers 9 years with 23 data values per year. There
are three time-series in the file. The file AVHRR_Egypt_82-93.txt covers 12 years with 36 data
values per year. Each year there are two vegetation seasons and there is one time-series in
the file. Data in the two ASCII files will be used further on in the tutorial. Basic information
about the test data is summarized in the table below.

Directory Type Area No. of Points Image Image file
years per year dim. type

\data\wa Image West Africa 3 36 200× 200 8-bit unsigned
\data\single ASCII Sweden 9 23
\data\single ASCII Egypt 12 36

9.1 Preparing the data

Before running Timesat it is necessary to prepare all the input data correctly. Timesat ex-
pects a data series spanning a number of years, and fits functions to each time-series provided
that there is a seasonality pattern in the data.

Input images

Timesat needs a sequence of vegetation index images covering a particular geographical area
(cf. section 2.2). Images can be downloaded from some data provider e.g. NASA and should
be converted to headerless binary format (see sections 9.9, 10.15 and 10.19). The number of
images needs to be identical for each year, and each image should represent the same time
interval (e.g. one day, 8-days, 10-days, 1 month etc.). If an image representing a certain
date is missing, an image denoting missing data should be added. This image should contain
numerical values outside the range of the valid data.
Example of vegetation index images are the files named wa_nd98011.img etc. provided in
the folder \data\wa. It is necessary to keep in mind that Timesat does not generate output
for all the input years. For time-series spanning n years, seasonality parameters will only be
extracted for the n−1 center most seasons. This limitation is explained in detail under section
4.1. In some cases, when the vegetation season peaks in the middle of the year, the user may
duplicate years at the beginning and end of the time-series to get seasonality parameters for

45

all years. The simplest way to do this is just to copy files from a year that is present in the
data to new files and add the names of the new files at the beginning or end in the list of
input files (see below). Do not forget to update the number of images on the first row!

List of input files

A list giving the total number of files and the full filename and path of each image needs to
be present, see sections 5.2, 5.3, and 10.15. An example is the file ndvilistwa.txt provided
in the \data\wa subfolder. Use any ASCII editor to view the file. The file should look like
this:

108
..\data\wa\wa_nd98011.img
..\data\wa\wa_nd98012.img

...
..\data\wa\wa_nd99123.img

The first row contains the number of data files (images), then comes one image name (including
path) per row. The two dots beginning each path name in the example file mean ”up one step”
defining a relative path. Thus if you are running from e.g. the c:\timesat32\run folder the
path will correctly point to the c:\timesat32\data\wa folder. However if you are running
from another folder (which is not one step down from timesat32) the program will not be able
to find the files. To be on the safe side you may want to replace the relative path with the full
(absolute) path. For Linux users we provide the corresponding file ndvilistwa_linux.txt.
In windows, a quick way to generate the image list is to open a command window, navigate
to the data folder, and execute the command dir /b *.img >listfile.txt. The file, here
named listfile.txt will need to be opened with a text editor, the no. of images added to
the top, the path appended to the file names, and the correct chronological order of the files
checked. In Linux the corresponding command is ls -C1 *.img > listfile.txt.

Input quality data (optional)

These are images corresponding to each of the vegetation index images. The quality images
contain a numerical code that can be used for defining the influence of the image (weight) in
the function fitting (cf. section 3.2). A maximum of three numerical intervals can be used for
determining the weights, e.g. 1 – 5 to be given weight 1, 6 – 10 to be given weight 0.5 and
11 – 16 to be given weight 0.1. The file format is identical to that of the input vegetation
index images, and a separate file list for these quality data should also be present. Example
quality images are the files named wa_cl98011.img etc. provided in the folder \data\wa. We
provide a list containing the names of input files in this folder, named clavrlistwa.txt. For
Linux users we provide the corresponding file clavrlistwa_linux.txt.

Single time-series data

An alternative to using images is to extract time-series data for certain pixel locations into
an ASCII file, and process these from the file (cf. section 2.1). Several time-series can be
processed, and the file format is defined in sections 2.1 and 10.15. It is also possible to

46

store corresponding quality codes in a similar ASCII file. Examples of single ASCII files are
provided in the folder \data\single.

Land cover data file (optional)

Timesat can process data for separate land cover classes (cf. sections 5.2 and 5.3). An image
file that assigns a code (0 – 255) to each pixel needs to be present. Each code represents a
land cover class. Note that the image format must be the same as for the vegetation index
images (see section 9.5). An example is the file landunits.rst given in the folder \data\wa.
It is convenient to keep the land cover file in the same directory as the image data.

9.2 Starting the TIMESAT menu system

The main driver for all Timesat processing, Matlab or Fortran, is a menu system. The
menu system is divided into three logical areas: data preparation, data processing, and post
processing (see Figure 22). To start the menu system please follow the instructions below.

Users with Matlab

First let’s make sure that the Timesat installation folder is on the Matlab path. Start
Matlab and select Set path (Figure 21). Click Add with Subfolders. Navigate to the folder
timesat_matlab under the main timesat33 folder. Save and Close. After this, set the
Timesat working directory to timesat33\run (Figure 21). Now, start the menu system
TSM_menu by typing TIMESAT at the Matlab prompt.

Set TIMESAT working directory Set Matlab path

Figure 21: To start the TIMESAT menu system make sure that the installation folder is on
the path, change to the run directory, and type TIMESAT in upper case at the prompt.

47

Figure 22: TIMESAT menu system. The system is divided into three logical areas: Data
preparation, Data processing, and Post-processing.

Users without Matlab

Execute the file TIMESAT.exe in the \compiled folder. This will start up the menu system
TSM_menu (see Figure 22). Set the working directory by selecting File on the menu bar and
choosing Preferences. Browse to the working directory timesat33\run and press OK.

9.3 TSM_imageview

Viewing images

We will illustrate this program (see Figure 23) by viewing one of the binary image files provided
in the \data\wa folder. Start TSM_imageview from the Timesat menu system. Under File,
Open image file, browse to the folder timesat32\data\wa and click on the wa_nd99051.img
file. The files contain NDVI data from the NOAA AVHRR sensor (make sure not to select any
of the wa_cl98011.img files since these only contain quality codes for the images). Leave the

48

choice under Image file type to 8-bit unsigned integer. Type 200 under No of rows in image,
and 200 under No of columns per row. These values can be inferred from Table 2. Click the
Draw button. To modify the Image display scaling you can increase the Minimum value to
about 100 and decrease the Maximum value to about 200 (enter these numbers in the edit
boxes near the bottom left window corner, or use the sliders). Also try out the other options
below the image area: Zoom on/off, Lock axes, Grid on/off, Datatip on/off, and Color scale.

Browsing through several files

If you have made sure that your file list correctly points to your vegetation index image data
(see section 9.1) you may use the function Open file list under File. Click on the Open file list
button and browse to \data\wa folder and select the ndvilistwa.txt file. Click on one of
the files, leave the window open and go over to the main window. Choose the correct settings
under Format and click the Draw button. You can then point to another file in the list and
just click the Draw button again to view this image file.

Figure 23: TSM_imageview with a loaded vegetation index image. The program can be used
to view binary image data and explore the correct settings for the file format of images.

49

Viewing qualitative land cover data

Use File, Open image file, browse to the folder timesat32\data\wa and click on the file
landunits.rst and press Draw. Under Color scale, select qualitative. This file contains,
as can be explored with the Datatip option, a classification of AVHRR NDVI data for 1999
into three broad categories, roughly representing the classes desert (1), semi-arid (2), and
semi-humid (3). Note that the classification does not represent an accurate delineation of
these eco-climatic regions in West Africa, but was primarily generated for the purpose of
this demonstration. When you are done viewing and testing the program you may exit
TSM_imageview.

9.4 TSM_GUI

Loading and processing ASCII time-series files

In this example we will load and process data stored in an ASCII time-series file. Click on
TSM_GUI in the Timesat menu system and a window similar to the one displayed in Figure
24 will show up. Then select File, Open ASCII data file. Use the Browse button to open the
file \data\single\MODIS_NDVI_Sweden.txt. This file contains NDVI data from MODIS for
the time period 2000 – 2008. Note the preview of the file contents loaded into the window.
The first row shows that there are 9 years of data, 23 observations per year, and 3 time-series.
Press Load data. The raw data from the first row of the file will load into the plotting area
of TSM_GUI.
Next, choose the different options under Data plotting. Note the different fits achieved with
Gaussian, Logistic and Savitsky-Golay. More than one fitting method can be displayed si-
multaneously by holding the ctrl-key while selecting method with the mouse. The fits are
affected by a number of options for detecting spikes, adapting to the upper envelope etc.
These options can be controlled by choices (check boxes and buttons) in the GUI either under
Common settings or Class-specific settings. The different options are discussed in detail in
section 5.3. When Savitsky-Golay is selected you may change the Savitsky-Golay window
size under Class specific settings (cf. sections 3.6 and 5.3). Try a large and small window
size. Note that the change of the window size takes effect when you hit enter or click outside
the editing area. There are more options, including the Spike method, Number of envelope
iterations and Adaptation strength, that you might want to explore.
When any of the fitting methods is selected, seasonality parameters for each of the defined
seasons are shown under Seasonality data to the right. More information about these pa-
rameters is given in section 4.4. To write the parameters to file select the Output menu and
choose Write seasonality data to file. Now a file named seasonality.txt will be found in
your working directory. You can open this file with any text editor. Note that the number of
seasons equals n−1 in case of single seasons and 2n−1 in case of dual seasons, where n is the
number of years. You can change the definition of the beginning and end of seasons. Make
sure that at least one fitting method is selected, and select Season start/stop under Data
plotting. Keep the Start of season method (under Class specific settings) at 1 and modify
the Season start and Season stop settings. These settings can be varied between 0 and 1
and define the fraction of the amplitude used for determining the beginning and end of the
seasons (cf. section 5.3). After that you can test choosing 2 under Start of season method.

50

Figure 24: TSM_GUI showing NDVI over West Africa, row 91, column 111. The asymmetric
Gaussian model fit is displayed along with the raw data values.

This option means that an absolute y-value that defines the beginning and end of seasons will
be used. Select 2 under Start of season method, and modify the values under Season start
and Season stop. Try values between 0 and 0.65 to see the effect.

Please note that the check boxes and buttons in the GUI correspond to the input settings
described in 5.3. Some of the input settings, such as the number of years and the number of
observations per year, are defined already when data are loaded. As we will describe later the
selected options can be transferred to the settings file.

Loading and processing binary vegetation index image data

In this example we will load and process data stored in binary vegetation index images. These
are NDVI 10-day composites from NOAA AVHRR over a section of West Africa. Make sure
TSM_GUI is started, and choose File, Open list of image files. This will ask you to select
a file list with names of binary images in sequence, starting with the first and ending with

51

the last (cf. section 9.1). Use the browse button and choose the file ndvilistwa.txt under
the \data\wa folder. Fill in 3 under No. of years. Press <tab> to move to the next item
to be filled. You will note that the value 36 (nptperyear = nts/nyear) was automatically
filled in. Tabulate to No. of rows in image and fill in 200, then to No. of columns per row
and fill in 200. Press Show image. This is not mandatory, but allows you to preview the
images in the file list and to select a processing window. Press the button Processing window,
which gives a movable hair cross, and select a small area of approximately 10 × 10 pixels
roughly at locations rows 91–100 and col 111–120. Press Return when you are done. Back in
the image_files_input window you will now see that the selected window coordinates have
been filled into edit boxes Rows to process and Columns to process. If you are not satisfied
you can modify these coordinates to the ones above manually. Now press Load data. Select
Gaussian fit under Data plotting. You should see a curve like the one in Figure 24.
Common settings. These settings affect all pixels in the images, irrespective of class (cf.
sections 5.2 and 5.3). The first to set is Data range. Set the range from 1 to 255 since these are
the minimum and maximum values of the the data used in this example. All values outside
this interval will be ignored in the processing of full imagery. You may try to set this to a
more narrow interval, e.g. 170 – 255, but too few pixels will be available for processing and the
pixel will be skipped. Set the values back to 1 to 255. Then try increasing Amplitude value
from 0 to a higher value. At about 39 and higher you should obtain an error message. This
threshold value can be used to remove pixels with very weak seasonality from the processing,
e.g. desert areas. Change the value back to zero to make sure you include all pixels in the
processing. Next setting to try is Spike method. Select method 1 to remove single values that
deviate more then a specific distance from the running median. A value of 2 denotes that
spikes larger than two standard deviations from the running median will be removed. The
value can be decreased to remove smaller spikes, or increased, to allow larger spikes. Also try
methods such as STL replace.
Class-specific settings. These settings are specific to individual land classes (cf. sections
5.2 and 5.3). TSM_GUI only recognizes one land class, but when running whole images using
TSF_process, it is possible to process data individually for different land classes. The first
class-specific setting is the Seasonal parameter. Set this to 1 since we assume a single season
per year (and to 0 if you assume dual seasons per year). We will explore this more in another
example. Then go on to No. of envelope iterations. When it is set to 1 no envelope adaptation
is carried out, and when set to 3 maximum adaptation is done (cf. section 3.4). This can be
further fine tuned using Adaptation strength. Minimum strength is 1 and maximum is 10.
Try different values, then set it to 2 and No. or envelope iterations to 3. The last setting
to discuss is Force minimum. This setting can be used to force minimum values to a certain
value. Check the box and enter a value of 160 to see the effect. All values below 160 will now
be forced to 160. Uncheck the box for the remainder of this demonstration. The rest of the
settings under Class specific values have been discussed above. Now, go through a number
of pixels by clicking the button Plot next series under Data plotting and try to find common
and class specific settings that make the curves fit nicely to the data. This is more of an art
than a science and has to be made with due consideration to the nature of the ground target
and type of satellite data used.
Saving settings to file. To save the settings currently selected choose Settings, Save to
settings file. This will start the tool TSM_settings and parse all the current TSM_GUI settings

52

Figure 25: TSM_settings with settings for West Africa. Common settings are shown in the
left pane and class specific settings in the right pane. For more information please see text.

to the tool (Figure 25). Common settings are found in the left frame and class specific settings
in the right frame. In addition there are some more settings related to e.g. the type of output
data (see sections 6.1 and 6.3) and land classes that may be chosen. Go to Job name and
enter west_africa. This is an important setting that determines the names of all output files
when running TSF_process. Then go to Output data and set seasonality, fitted data, and
original data all to 1 so that the files .tpa and .tts will be printed. Now save the settings to
an output file by going to File, Save settings file as. Type the name west_africa and click
Save. Then exit TSM_settings and return to the TSM_GUI window. You may now view the
new file west_africa.set, which resides in the run directory, with any file editor.
Loading settings from file. To demonstrate how settings are loaded from file you can
now exit TSM_GUI to clear all settings. Then open it again from TSM_menu. Load the set-
tings file saved in the previous step by going to Settings and choosing Load settings file.
Browse to the file west_africa and click on Open. The data and settings specified in the file
west_africa.set will now be loaded.

53

Managing data with dual seasons

In TSM_GUI go to File, Open ASCII data file. Browse to the \data\single directory under
Timesat, and select the file AVHRR_Egypt_82-93.txt. This ASCII file contains 12 years of
10-day NDVI-composite data (scaled values) from the NOAA AVHRR sensor over a point in
the Nile valley. Load the data and select Logistic fit. With the default setting of the Seasonal
parameter (under Class-specific settings) of 0.5, the logistic curve will not fit well to the data.
If you check Coarse seasonality the resulting curve of the initial coarse fit is shown (see section
3.5). Now, change the Seasonal parameter to 0 to force the seasonality to dual seasons instead
of a single season. Both the coarse fit and the logistic fit will now match the data better. To
improve the fit you may need to zoom in on a few years. You may then try different settings
of No. of envelope iterations and Adaptation strength.

Weighting observations with quality data

Load data for West Africa using the previously saved settings file west_africa.set (Settings,
Load settings file. Go to File, Open list of image files and check Use quality data. We will now
use quality indices from the CLAVR (Clouds from AVHRR) data set to weight the function
fitting in Timesat (see section 3.2). The quality indices are stored in binary image files of
the same data type and format as the NDVI image data. Use the Browse button next to the
Weight list file, and open the file clavrlistwa.txt in the \data\wa directory. Under File
values type the following

File values Weight
From 1 to 12 0.1
From 13 to 22 0.5
From 23 to 31 1.0

The above values will assign the weights in the right column to the data ranges under file
values. We will here assign the lowest weight to values between 1 and 12 (cloudy). We use
the weight 0.1 rather than 0.0 to the lowest class to avoid possible problems that might arise
if long sequences of data of low quality occur. For the middle class (mixed) we assign weight
0.5 to values between 13 and 22. For the highest class (clear) we assign weight 1.0 to values
between 23 and 31. Then press Load data. The chosen weights 0.1, 0.5 and 1.0 are arbitrarily
chosen and represent the relative influence we want to assign each of the categories in the data
fitting. Back in the TSM_GUI window check Weights under Data plotting to see which data
points are assigned what weights. A pixel where the effect of using or not using weighting with
the above values will have a strong effect is row 111, column 117. Load this pixel (File, Open
list of image files) and try varying the weight values to see what the effect will be on the fitted
curve. Reset the data to the above values and save the new settings to west_africa.set by
going to Settings, Save to settings file. In TSM_settings save the file and overwrite the old
west_africa.set.

54

Figure 26: TSM_settings with quality data.

9.5 TSM_settings

Modifying the settings file

We will now look more closely at the program for modifying settings files. Start TSM_settings
from the Timesat menu system. Recall that we had saved a file called west_africa.set in
the current run directory. Load this file by going to File, Open settings file, and select
west_africa.set. The window should look like the one in Figure 26. We will now modify
some of the settings to prepare for processing the full image data set using multiple land
classes. Go to Rows to process and Columns to process and change each of these so that the
processing is from 1 to 200 instead. Set Use land data to 1 and click the Browse button to
the right of Land cover file and choose the file landunits.rst in the \data\wa folder.

Working with multiple land classes

We will now add land classes for each of the land units shown in the map landunits.rst
displayed under 9.3. In this map the following codes were used: 0: water, 1: desert, 2: semi-
arid, and 3: semi-humid. Let’s say that the settings we decided on earlier fit well in the class
2 above, we will need to add settings for the other land units as well. First, let’s assign a

55

land code to the class that we have already defined. Go to Code under Class specific settings,
and change it to 2. Then add a new class by clicking on the button Add new class. Let’s
add settings for the desert areas. Change Code to 1, Seasonal par. to 1, No. of envelope
iterations to 2, Adaptation strength to 2, Fitting method to 2, Value for season start and
Value for season stop each to 0.3. Then add another class, representing the semi-humid areas.
Set Code to 3, Seasonal par. to 1, No. of envelope iterations to 3, Adaptation strength to
5, Fitting method to 1, Sav-Golay wind. size to 5, and Value for season start and Value for
season stop to 0.5. Do not press Add new class again. The Ocean areas (code = 0) should not
be processed, so we will leave this classed undefined. Use the button Cycle through classes
to check the settings for each of the classes. You have the option to Remove class if you have
accidentally added a class too many. Save the file under the name west_africa_full.set.
When you run TSF_process with this file, different settings will be applied to each of the land
cover units in the file landunits.rst (see section 2.2).

56

9.6 TSF_process

This program carries out data smoothing and function fitting for all pixels in an image stack.
It runs as single or multiple (see 9.7) processes, controlled by a settings file.
To start the program click on TSF_process in the Timesat menu system. Timesat will ask
for the input settings file. Select the file west_africa_full.set. A command window will
then open and TSF_process will start running immediately. You can also start TSF_process
directly from a separate command window by typing TSF_process. If this window has not
been opened by Timesat it is necessary to first set the path to the Fortran executables. In
DOS this is done by typing a similar command to the following at the command prompt:

set path=c:\timesat33\timesat_fortran\main;c:\timesat33\timesat_fortran\tools;%path%

In Linux it is done by typing the following command:

PATH=/myhome/timesat33/timesat_fortran/main:/myhome/timesat33/timesat_fortran/tools:$PATH

The actual path on the user’s own computer to the Timesat executable directories should
replace those in the examples above. After starting TSF_process directly from a separate
command window the message Give name of input file: will appear on the command line
(note that here you will need to use the full file name, including the file prefix .set). Type
the name of the settings file and press return. The question Give number of processors will
appear. Answer 1 to this, and the processing will start (see next session for running multi-
processor jobs). Alternatively, you can use the command line format and launch the program
by writing TSF_process followed by the name of the settings file and 1 on the same line and
pressing return. The command window is shown in Figure 27.

Figure 27: Command window for running TSF_process started from the command prompt.

The program will process the data row by row. As you will notice, when having large data
files the processing can take considerable time.
If you are not prepared to wait for the finished result we recommend you to stop the processing
(hit crtl-c), and decrease the data window to be processed. This can be done by editing the

57

settings file directly or by using the TSM_settings program. To be able to continue this
tutorial in a meaningful way we recommend that you make the window relatively large, e.g.
Rows: 1 – 100, columns: 1 – 60. To run the program again, type TSF_process in the DOS
command window. It should not take many seconds to complete the run with the modified
file on an ordinary PC. After the run the command window should look like this:

....
Row 99
Row 100

Index file west_africa_TS.ndx created

Index file west_africa_fit.ndx created

-- Processing finished --

Seasonality parameters written to:
west_africa_TS.tpa

Fitted functions written to:
west_africa_fit.tts

Date started: 20121112
Time started: 115559.066
Date stopped: 20121112
Time stopped: 115602.086

Data from the processing are saved to file. Check the contents of your current working
directory and note that the two files west_africa_TS.tpa, west_africa_fit.tts, and cor-
responding index files (.ndx) have been created (cf. sections 6.1 and 6.2).

9.7 TSF_process parallel

This executes TSF_process on multiple parallel runs, thereby reducing the processing time.
The parallel processing is done in two steps. In the first step data are analyzed and a script
file is created that assigns the job to the different processors. The assignment is done is such
a way that a good load balance is obtained. In the second step the script file is run and the
work is distributed on the different processors. After each processor has finished the output
files are merged to single files and intermediate files are removed. To initiate the first step
click on TSF_process parallel in the Timesat menu system. Timesat will ask for the input
settings file. Select the file west_africa_full.set. The message Enter no. of processors will
appear. Enter the number of processors of you system, e.g. 4, and press OK and the analysis
of the data will start. At the end of the analysis the script file west_africa_script.bat
(Windows) or west_africa_script.sh (Linux) is produced. To start the multi-processor
job type west_africa_script.bat (Windows) or ./west_africa_script.sh Linux on the
command line. Please note that for the script file to work the Fortran executables must be
on the path (see section above). Parallel processing is not entirely straight forward and may
depend on the operating system. In case of problems the user is advised to read the detailed

58

description of the parallel processing found in section 10.9. After the run the command
window should look like this:

....
Parallel jobs finished
Merging files
Done merging files

Cleaning up
Done merging files

Cleaning up
Processing done

9.8 Post-processing the results of a TSF_process run

The main Timesat processing is now done and we will see how data can be post-processed
and viewed (cf. section 6.3). We provide a few basic programs for opening and processing the
output files, but for certain processing the user may be required to create tailored software.

TSM_fileinfo

This routine provides information about a Timesat output file. To activate it you click on
TSM_fileinfo in TSM_menu. You will be asked to select an input file. Select west_africa_TS.tpa.
A window will open that provides the following information: no. of years, no. of points per
year, total no. of points, no. of rows and columns, extent of processing window. When the
output is from image mode processing a map showing the number of seasons for each pixel is
displayed to help the user to geographically localize the area that has been processed (Figure
28).

Figure 28: File information along with a map to localize the processed area.

If you select a file containing fitted data (e.g. west_africa_fit.tts), the map will display
the number of years with fitted data available in the output file.

59

TSM_printseasons

Program for viewing the seasonality parameters for selected pixels or points. This is the
same information as generated in TSM_GUI, but more convenient for printing information for
a large number of pixels to file. Press TSM_printseasons in TSM_menu (you can also start the
program directtly from the Matlab prompt). The program will start in the Matlab command
window, and ask you to specify a .tpa file and a specific area to view. Give the name
west_africa_TS.tpa. To view seasonality information for pixels between rows 30 and 35 and
columns 50 and 50 complete the following dialogue:

--
TSM_printseasons
Reads the output file from the TIMESAT program
and prints seasonality data

TIMESAT version 3.3
Copyright Per Jonsson and Lars Eklundh
per.jonsson@mah.se, lars.eklundh@nateko.lu.se
Feb. 2017

--
Give name of seasonality file:

>> west_africa_TS.tpa
Data window in file

Rows : 1 - 200
Columns : 1 - 200

Now enter the window you wish to display data for
First row:

>> 30
Last row:

>> 35
First column:

>> 50
Last column:

>> 50

Name of output text file (hit Enter to print to screen):

Row, Column: 30 50
Data for season 1
Beg. End. Length Base Mid-x Max. Amp. L-der.
22.2 32.4 10.2 142.6 26.8 188.0 45.4 7.5 ...

Data for season 2
Beg. End. Length Base Mid-x Max. Amp. L-der.
57.5 68.0 10.5 141.9 62.2 194.5 52.6 9.9 ...

60

Hit enter to continue

This shows you seasonality parameters for the first pixel in the specified window. Please note
that the parameters are settings dependent and that you may not get the same values as
displayed here in the manual. Timesat has identified two seasons, i.e. number of years −1
(see section 4.1). The beginning of the first season is at 22.5. In this case, the time step is
10 days, meaning that it occurs at day 225. The end is at 32.0, i.e. day 320. The length of
the first season is 9.5, i.e. 95 days. Season two starts at 57.6 (day 576 from the beginning),
and ends at 67.2 (day 672), and is 9.6 (96 days) long. See section 4.4 for explanation of
the remaining seasonality parameters. If you continue to hit Enter you will see seasonality
information for the remaining pixels in the window. When specifying an output file all the
information will be printed to an ASCII file in your working directory.

TSM_viewfits: viewing the fitted functions

This Matlab program lets you view fitted data stored in the Timesat .tts files. To view
original time-series and fitted functions for pixels between rows 30 and 35 and columns 50
and 50 complete the dialogue below:

--
TSM_viewfits
Reads the output function files from the TIMESAT program
and displays fitted functions and original time-series

TIMESAT version 3.3
Copyright Per Jonsson and Lars Eklundh
per.jonsson@mah.se, lars.eklundh@nateko.lu.se
Feb 2017

--

Display fitted functions? (1/0)?
>> 1
Display original time-series? (1/0)?

>> 1
Give name of input fitted data file:

>> west_africa_fit.tts
Give name of input raw data file:

>> west_africa_raw.tts

Data window in file

Rows : 1 - 100
Columns : 1 - 60

Now enter the window you wish to display data for
First row:

61

>> 30
Last row:

>> 35
First column:

>> 50
Last column:

>> 50
Displaying data for row: 30 column 50
Hit enter to continue

A plot window will open with fitted data for the first pixel. By hitting Enter you can view
the remaining pixels in the window. This program is valuable for systematically checking fits
of a larger run.

TSF_fit2time: Writing fitted time-series data to an ASCII file

Select TSF_fit2time and you will be asked to select an input .tts file (raw or fit). Here we
choose west_africa_fit.tts. A command window will open with the dialogue:

--
Program TSF_fit2time
Program for generating ASCII time-series from TIMESAT fitted
or raw data files
Arguments: infile frow lrow fcol lcol outfile

TIMESAT version 3.3
Copyright Per Jonsson and Lars Eklundh
per.jonsson@mah.se, lars.eklundh@nateko.lu.se
Feb 2017
--

No. of years: 3, No. of points per year: 36
Image window (rows, cols): 1 - 100 ; 1 - 60

Specify image window to extract data for
(first row , last row, first column, last column):

>> 30 35 50 50
Name of output file:

>> timeseriesfile.txt

Fitted data (original time-series data, if we are reading a raw file) have now been written to
the file timeseriesfile.txt. The data structure is the same as the one described in section
2.1. The first line gives the number of years, the number of data values per year, and the
total number of time-series in the file. After that the extracted time-series are given row by
row: all time-series belonging to row 30 then all those belonging to row 31 etc. You can view
and edit the output file with your file editor. The file should look like this:

% Columns: row, col, data. No. of years: 3. No. of points per year: 36. No. of series:6

62

30 50 1.49521E+02 1.46688E+02 1.44439E+02 1.42741E+02 ...
31 50 1.62171E+02 1.56509E+02 1.51780E+02 1.47949E+02 ...
...

where the first two values on each row are the row and column numbers. Data are displayed
in scientific notation.

TSF_fit2img: Creating an image from the fitted data

This program generates an image from the smoothed data generated by the fitting methods
Gaussian, Logistic or Savitzky-Golay. Activate TSF_fit2img and again give the name of the
fitted data file. Follow the dialogue:

Program TSF_fit2img
Program for generating images from TIMESAT fitted data files
Arguments: infile misspix outfile filetype image_no

TIMESAT version 3.3
Copyright Per Jonsson and Lars Eklundh
per.jonsson@mah.se, lars.eklundh@nateko.lu.se
Feb 2017

Code to give to missing pixels
>> 0
Name of output files (no extension!)

>> west_africa_fit

Specify the file type for the output image files (1,2 or 3)
1 = 8-bit binary
2 = 16-bit signed integer
3 = 32-bit real

>> 3

No. of years: 3, No. of points per year: 36
Image window (rows, cols): 1 - 100 ; 1 - 60

Image no. to map (-1 = all)
>> 54
west_africa_fit_0054 opened
Running...
Fitted data images written
File format 32-bit real

In this example we choose to create an image from the 54th time step. Since there are 36
images per year it follows that this is in the middle of the second year (54 − 36 = 18). We

63

have chosen to give missing data pixels (e.g. those where Timesat has not fitted any data)
value 0. The output data has been formatted to 32-bit real for maximum precision. To create
images for all the dates specify −1 under Image no. to map.
To view the created image, activate TSM_imageview and load the file west_africa_fit_0054.
Note that the file format is 32-bit real, and that the size of the file is 100 rows × 60 columns.

TSF_seas2img: Creating an image from the seasonality data

This program generates an image from the seasonality parameters generated by Timesat.
Click on TSF_seas2img in TSM_menu. Now enter the seasonality file west_africa_TS.tpa.
Then specify the seasonality parameter to map (see section 4.4). Here we will map the Start
of season (1). Then specify an interval that is wide enough to cover the second season (see
section 6.3). A suggestion is to specify this interval to 30 to 82 since this will overlap the
second year (which is contained in images 37 – 72). Define codes for missing data due to no
season found within the interval, and no pixel data at all found at that location. Here we
will separate them by giving different codes, 0 and 1. Finally, give a name of the output file,
and specify its format. Carefully note the format since it is important when viewing the file
with TSM_imageview. Here we will give the name begin, and specify output in full precision,
32-bit real. The full dialogue is shown below.

--
Program TSF_seas2img
Program for generating images from TIMESAT seasonality files
Arguments: infile seaspar datemin datemax misseason misspix nameout filetype

TIMESAT version 3.3
Copyright Per Jonsson and Lars Eklundh
per.jonsson@mah.se, lars.eklundh@nateko.lu.se
Feb. 2017

--

Start-of-season time __________________1
End-of-season time ____________________2
Length of season ______________________3
Base value ____________________________4
Time of middle of season ______________5
Maximum value value of fitted data ____6
Amplitude _____________________________7
Left derivative _______________________8
Right derivative ______________________9
Large integral _______________________10
Small integral _______________________11
Start-of-season value ________________12
End-of-season value __________________13

Seasonal parameter to output

64

>> 1
Specify time interval between which the season MAXIMUM is expected to occur.
Only pixels with seasons that have a maximum between given dates
will be processed.
Example: to extract the seasons of the second year using monthly data
(i.e. 13-24), specify a min value of e.g. 13 and a max value of e.g. 24.
Give min,max dates(e.g. 13, 24)

>> 30,82
Missing value where no season is found between min and max dates)
Give missing value code (e.g. -1)

>> 0
Missing value for other cases (pixel not processed due to low amplitude,
undefined class, failure to fit function etc.)
Give missing value code (e.g. -2)

>> 1
Give name to append to output files (no extension!) >> begin

File type for the output image files
2 = 16-bit signed integer (values will be rounded to nearest integer)
3 = 32-bit real (no rounding)
Specify file type (2 or 3)

>> 3

Opening begin_season1
Opening begin_season2
Opening begin_nseas
Opening begin_errors.txt
Opening begin_both_seasons

Working...
Finished writing data
File format 32-bit real

After the program has finished the run, view the resulting image with TSM_imageview (re-
member to use the same file format as the one you used when the file was created). The
file begin_nseas contains the total number of seasons for each pixel. Over oceans it displays
value 1 since this is the missing value code we specified, and over land it has found two
seasons: This is logical since Timesat fits n − 1 seasons in unimodal areas, where n is the
number of years in the data set. The file begin_s1 shows the seasonality parameter for the
first season identified within the time-interval specified. In the SE part of West Africa the
season began around date 60 (i. e. 60 − 36 = 24, meaning about day 240), whereas in the
NW part of the area it began around date 69 (i.e. 69 − 36 = 33, or about day 330). Note
that some scattered pixels have value zero, indicating that no seasons was found within the
specified time interval, and that the oceans have value 1, since this was the code that we
assigned pixels not processed at all. The file begin_s2 shows any secondary seasons found
within the time period specified. Only a few scattered pixels are found, probably indicating

65

the presence of noise at these locations. To investigate abnormal pixels we recommend using
TSM_GUI to investigate the individual times-series at specific locations. Now, try generating
some of the other parameters contained in the file west_africa_TS.tpa.
This is the end of the short tutorial. Output files generated are:

seasonality.txt ASCII file containing seasonality data for a chosen pixel.
west_africa.set ASCII files containing settings for running Timesat.
west_africa_TS.tpa Binary file containing Timesat parameters.
west_africa_fit.tts Binary file containing fitted data values.
west_africa_raw.tts Binary file containing original time-series values.
timeseriesfile.txt ASCII file containing fitted data values for selected pixels.
west_africa_fit_0054 32-bit real binary image file containing fitted data value for

time step 54.
begin_nseas Binary image file containing no. of seasons.
begin_season1 Binary image file containing the selected seasonality parameter

for the first season identified within the time interval specified.
begin_season2 Binary image file containing the selected seasonality parameter

for the second season identified within the time interval
specified (if present).

begin_both_seasons Binary image file containing seasonality parameters for both
seasons within the time interval (if more than one is found).

9.9 Checklist for processing new vegetation index image data

In this section we provide a checklist that should help the user to define a settings file and
process a new image data set of their own. Compare with the steps in the previous sections.

1. Create a new data directory where the vegetation index image files and, optionally, the
quality image files should be saved.

2. Create a run directory where the output files from the Timesat processing should be
written. Optionally the user may use the directory timesat32\run.

3. Check that the Matlab executables are on the Matlab path (cf. section 7.2).

4. Download or build vegetation index image files and (optional) images with quality data
from some data provider, e.g. NASA. Save the files in the created data directory.

5. Determine and note the total number of images. Determine the number of years and the
number of images per year.

6. Determine and note the number of rows and columns for the image files.

7. Convert all images into flat (header less) binary format. The file type should be one of
the following: 8-bit unsigned integer, 16-bit signed integer, 32-bit real. For 16-bit signed
integer please also determine if it is little or big endian byte order. The checks on the
images are best done using TSM_imageview (cf. sections 9.3 and 10.2). File conversion can

66

be carried out with software such as the open source Geospatial Abstraction Data Base
Library (GDAL), which can be downloaded from www.gdal.org.

8. Prepare an image file list. At the first row of the list the total number of vegetation index
images should be given. After that comes the name and path of each of the images. If
there are images missing generate a dummy image with values outside the normal data
range. Write the name and path of the dummy image at the correct position in the image
file list (cf. section 9.1). The user might want to duplicate the file names of the first and
last years (cf. sections 4.1, 4.2, and 9.1). Give the image file list some suitable name and
save it in the created directory along with all images. If quality data are available create
a file list also for the quality images.

9. If available include a land cover map with the same spatial resolution and data format as
the image files (cf. section 9.1). Use TSM_imageview to check the land cover map. Under
Color scale select qualitative (cf. section 9.3).

10. Determine if there are areas with more than one vegetation season per year. Consider
putting such an area in a separate land class.

11. Determine and note which part of the image you are going to process. TSM_imageview is
helpful for this task.

12. Use TSM_GUI to explore your time-series data and fine tune the settings (cf. section 9.4).
Pay attention to: spike method, fitting method, as well as number of envelope iterations,
and adaptation strength. Explore the best method for determining the start and end of
the season. If you have a land classes covering an area with two vegetation seasons per year
the seasonal parameter should be put to a small value. If you have land classes covering an
area with only one season per year the seasonal parameter should be put to 1. Carefully
study sections 5.2 and 5.3 and make sure that you see the connection between the settings
in the GUI and the items in the settings file.

13. Use TSM_settings to generate the final settings file (cf. sections 5.2, 5.3, and 9.5). The
settings file will be saved in the run directory.

14. Use TSF_process for processing the data. You may choose to run the program from the
DOS command prompt or from TSM_menu.

15. We strongly advice the user to output and view fitted time-series (saved in a Timesat
.tts file). Use TSM_viewfits to check the fits for as many pixels as possible. By spending
time at this step the user can make sure that the fits turned out in the expected way. If
things look strange then the settings must be tuned again.

16. Go to the run directory and check that the expected output files are in place. Do necessary
post-processing to generate seasonality images etc (cf. section 9.8).

67

Part IV
Reference Manual

68

10 Reference manual

This chapter contains specifications of all the programs included in Timesat. Programs coded
in Matlab are given the prefix TSM_ (Timesat Matlab). Programs coded in Fortran are all
given the prefix TSF_ (Timesat Fortran). The Fortran programs can be run either from the
Timesat TSM_menu system or from the DOS prompt.

10.1 TSM_menu

TSM_menu is an interface for starting up all the different Timesat programs (see Figure 29).
Matlab programs are started with the blue buttons and Fortran programs with the pink
buttons. The buttons are organized from top to bottom in rough order of processing. The
startup buttons are organized under Data preparation, Data processing and Post-processing.
Fortran programs are run from a command window (DOS prompt) that opens in the current
working directory. The name of the Fortran program folder will automatically be appended
to the path of the command window.

Figure 29: TIMESAT menu system. The system is divided into three logical areas: Data
preparation, Data processing, and Post-processing.

69

Timesat programs can be accessed also outside TSM_menu by typing their commands in the
Matlab command window. Fortran commands are accessed from DOS command windows. If
the command window has not been opened by Timesat it is necessary to add the directory
with the Fortran executables to the DOS path before executing the commands. Alternatively
give the command from the DOS prompt including the full path, e.g. to run TSF_seas2img:

c:\timesat33\timesat_fortran\tools\TSF_seas2img

The following menu choices are available in TSM_menu:

Top-level Sub-level Contents
File Index Timesat file Creates an index file for a .tts or .tpa file.

Update old settings file Updates versions settings files to version 3.3
Preferences Opens a dialogue for changing the current Matlab

working directory
Exit Exits the menu system

Help About Displays version number of current Timesat
release, and contact information to the authors.

70

10.2 TSM_imageview

This program (Figure 30) is particularly useful for quick display and for checking the format-
ting of flat (header less, unformatted) binary images. The user can vary settings for Image file
type, No. of columns and No. of rows until the image displays correctly. Input files are binary
images of the same kind as handled by the TSF_process program. These files are described
in more detail under section 10.15. The program will issue a warning if the file size does not
correspond with the specified image formatting.

Figure 30: TIMESAT image view. This program is particularly useful for quick display and
for checking the formatting of flat (header less, unformatted) binary images. The user can
vary settings for Image file type, No. of columns and No. of rows until the image displays
correctly.

71

Some specific functions in the program are:

• identification of file types by testing different binary file type settings

• linear scaling of image data using the sliding bars or by specifying numeric values

• zooming using the Matlab default zooming functions

• locking the x- and y-axes. Useful when modifying the image scaling after zooming in

• display of pixel values by use of the Matlab datatip function, and choice of different
color scales, including a scale for qualitative (nominal) data values, such as classified
images

The following menu choices are available in TSM_imageview:

Top-level Sub-level Contents
File Open image file Opens a window for selecting an input image file

Open file list Opens a window for selecting an image file list. Click on
a file in the list, then move over to TSM_imageview
main window without closing the list, and fill out the
choices under Format before pressing Draw

Printing window Opens a clone of the data plotting window with the
default Matlab plotting tools, for printing and export to
graphics files

Exit Exits menu system
Help About Displays an information text about TSM_imageview

10.3 TSM_GUI

This Matlab program (Figure 31) displays time-series data, fits functions to the data and out-
puts seasonality and fitted data for single time-series, from data located in binary vegetation
index image files or ASCII time-series files. The program is useful for testing optimal settings
for specific pixel locations, to be used for subsequent processing of full images using the For-
tran program TSF_process. It is advisable to test a large number of pixels before deciding
upon the settings for a specific image class. With TSM_GUI it is possible to go through profiles
along columns or rows, or to specify square areas to process. The definition of settings is
done by visually examining the function fits to the chosen time-series. The success of this
process relates to the nature of the time-series, and the type of noise or disturbances in the
data. Often a number of iterations will be necessary before a final fit has been achieved. This
manual work is more of an art than a science. We have refrained from defining a goodness-
of-fit statistic for the fits, since the best fits are often upper-envelope weighted, hence not
unbiased, least-squares solutions. Note that the check boxes and options correspond to the
settings described in sections 5.2 and 5.3. Some of the settings related to the image file type
etc are set when the images or time-series are loaded (see section 10.4).

72

Figure 31: TSM_GUI. This is the main program for fitting functions to time-series data for
selected pixel locations or for single ASCII data files.

The TSM_GUI program contains, in addition to all the check boxes and other options, the
following menus:

73

Top-level Sub-level Contents
File Open list of image Opens a window for defining input from binary files

file
Open ASCII data Opens a single ASCII file containing time-series data
file
Printing window Opens a clone of the data plotting window with the

default Matlab plotting tools, for printing and export
to graphics files

Exit Exits TSM_GUI
Settings Load settings file Loads a predefined settings file

Save to settings file Opens the TSM_settings tool for saving the current
TSM_GUI settings to a file *.set

Output Write seasonality Writes seasonality data to the file seasonality.txt
data to file computed from fitted functions using the current

settings
Write fitted function Writes fitted functions to files sg.txt, logistic.txt,
to file or gauss.txt depending on the choice

Help About Displays a short information text

10.4 Data input for TSM_GUI

Loading binary image data

When selecting File, Open list of image files in TSM_GUI the window image_files_input
(Figure 32) is loaded. Specify a file containing a list of binary input images (see section 9.1)
under File lists. The file names should be given with a relative or full path. The format of
the image files listed is specified in section 10.15 under Image data files.
After specifying the input file list, the data format is given in the window. Note that No.
of images/year will be automatically computed from the data in the file and the value given
under No. of years, No of rows in image, and No of columns per row should define the size
of each input file. However, Rows to process and Columns to process define the specific area
that TSM_GUI will attempt to load. TSM_GUI loads all specified data into primary memory,
hence, defining a very large area may lead to memory allocation problems. It is thus advisable
to process only a small portion of the data at the time. Use the button Show image to get a
preview of the binary images. Note that loading of large images can be very slow. In preview,
a box defining the rows and columns to be processed can easily be defined graphically.

Select Use quality data when quality data for weighting the image data are to be used. The
quality images should have formatting that is identical to the input images. Three data
intervals and three corresponding weights associated with each interval are specified. The
Load data button will not be activated until all necessary values have been provided.

Loading data from ASCII file

When selecting File, Open ASCII data file in TSM_GUI the window single_file_input will
be loaded (Figure 32). The name of the input file is given, and a preview of the file will be
loaded into the window. The format of the file is defined in sections 2.1 and 10.15. If quality

74

Figure 32: Window for loading binary images (left) and data from ASCII files (right).

data are available, these can be loaded by specifying Use quality file. Quality data should be
stored in a file of identical formatting as the sensor data. To activate the Load data button,
both data file and quality file need to be specified.

10.5 Settings in TSM_GUI

Settings in TSM_GUI will be implemented immediately for the time-series. Display can be slow
when multiple processing is done, e.g. fitting with different methods, or fitting very long data
series. The choices under Data plotting control the display of the current time-series. When
selecting Savitzky-Golay, Asymm. Gaussian, Double Logistic, or STL season / trend, the
fitted data will be displayed along with the original data, and seasonality parameters will be
shown in the window Seasonality data. Choosing Coarse seasonality displays the results of the
sinusoidal fit (section 3.5). The button Plot next series will load the next data series (column
and row when input is from images, or next line when input is from ASCII file). Under
Common settings settings that will be valid for all pixel classes are found. These typically
define criteria for including or excluding time-series, e.g. if the amplitude is too low, or if
too few data values lie within the data range. Under Class-specific settings those settings
are defined that can be applied differently to different classes when running the TSM_process
module. TSM_GUI, however, does not recognize different classes when processing time-series.
The meaning of the different settings is defined in section 5.3 in the description of the settings
file.
When the user is satisfied with the settings for a given area or land class, these can be stored

75

to file by going to Settings, Save to settings file. This starts the TSM_settings program
and transfers the current settings to that program. Values can be modified, classes can be
added, and data can be stored to a settings file. Values modified in TSM_settings will not
be returned to TSM_GUI.

10.6 Output files from TSM_GUI

Various ASCII data can be written from TSM_GUI for selected time-series. These will be
written to the working directory under the following names:

seasonality.txt Seasonality data for each season
sg.txt A single line of fitted values using the Savitzky-Golay method
gauss.txt A single line of fitted values using the asymmetric Gaussian method
logistic.txt A single line of fitted values using the double logistic method
STL_season.txt A single line representing the STL seasonal curve
STL_trend.txt A single line representing the STL trend line.

10.7 TSM_settings

TSM_settings is a tool for creating and managing Timesat settings-files (Figure 33). It can
be called from the Matlab command line, from TSM_menu or from TSM_GUI. Settings files have
the extension .set and are used for storing settings that will affect the way TSM_process
processes data into seasonality or smoothed data. A settings file is an ASCII file that can be
edited directly with any file editor, or managed with the TSM_settings program. Detailed
explanations of each of the parameters are given in section 5.3.
The main window is divided into two sections. Under Common settings general settings, e.g.
input files, processing window, amplitude cutoff, spike filtering method, and mode of analysis
are defined. Also the name of optional quality files and a class file are defined here. Under
Class specific settings each category of settings for specific classes are defined. If only one
class is used (the default if no land class file is specified), the settings defined for class 1 will be
used for all data processing. Up to 255 classes can be defined. Class settings can be viewed,
added or removed by the buttons Cycle through classes, Add new class, and Remove class.

76

Figure 33: TSM_settings window. Common settings are defined in the left pane and class
specific in the right pane.

77

TSM_settings contain the following menus

Top-level Sub-level Contents
File Open settings file Loads settings from a .set file. This choice is not

activated when starting the program from TSM_GUI
Update old settings Updates older version settings files to version 3.3
file
Save settings file as Saves settings to a .set file
Add current class Adds settings for the currently visible class to the end
settings to file of an existing settings file. This choice is useful when

of defining settings for different classes. An initial .set
file is created for the first class. When subsequent class
settings have been defined in TSM_GUI, TSM_settings
is loaded and the current settings appended to the file
using this option.

Exit Exits TSM_settings
Help About Displays an information text about the program

10.8 TSF_process

This is the core module in the Timesat package. It is used for processing full images or
collections of ASCII time-series and to generate Timesat seasonality and/or smoothed data
files. TSF_process is started from TSM_menu or from the command line in a DOS window.
When executing the program the user will be prompted to give the name of an existing set-
tings file. After the execution, TSF_process will write the names of the output files to the
command window. The algorithms and the functionality of the programs are discussed in
Part II Algorithm Theoretical Basis, and the output files are described in sections 6.1, 6.2,
and 10.16. In version 3.1 the program TSM_process was also accessible from the Timesat
menu. From version 3.2 it has been removed from the menu but, for compatibility reasons,
remains as a program that can be executed from the Matlab command line.

Question Explanation
Give name of input file Specify settings file
Give number of processors Specify 1 for running directly, 2 or higher

for starting a parallel processing job (see section 10.9)

Command line
TSF_process settings_file no._of_processors

10.9 TSF_process parallel

Using this option enables execution of TSF_process in parallel mode. It is a two-step process.
In the first step, the user specifies the number of processes to run. This is determined by the
available processors on the current machine. If e.g. 10 is specified, the job will be divided
into ten equal parts, and ten individual settings files will be generated. In Linux a report of

78

this step is written to a file called output which can be viewed to make sure that it has com-
pleted correctly. A script file named jobname_script.bat (Windows) or jobname_script.sh
(Linux) will be generated. The script file contains commands for starting the parallel jobs,
for merging the resulting files (see TSF_merge below), and for deleting temporary files. In
the second step the script file is executed. This is done by typing jobname_script (DOS)
or ./jobname_script.sh (Linux) at the command prompt. When the jobs are executed re-
ports will be written to files called output1.txt, output2.txt ...etc. (Windows) or output1,
output2... etc. (Linux). These can be viewed with an editor to see the status of the jobs,
and to ensure that the jobs have finished without errors. Please note that a number of oper-
ating system commands are used in the script files which are not always identical on different
operating system versions. The Linux version uses the Unix Bash shell; users running other
shells may be required to rewrite the script. To ensure correct execution of the jobs the user is
advised to first try out parallel processing on a small subset of the data to make sure that the
whole process is completed without errors. It should also be noted that it is not advisable to
use the maximum number of processors on the machine (or exceed it) since this may deplete
all system resources.

10.10 TSF_readheader (obsolete)

This program is obsolete but kept in the Fortran folder for backwards compatibility. It is
replaced by TSM_fileinfo.

10.11 TSM_fileinfo

This program is used for displaying the structure of a Timesat output file (.tpa or .tts).
The output information will display the following data: no. of years, no. of points per year,
total no. of points, no. of rows and columns, extent of processing window. In addition it
will display a map showing the number of seasons (.tpa) or number of years (.tts) of data
stored in the file. The map is to help the user to identify the geographical area that has been
processed. If single time-series data are processed the map is not displayed.

10.12 TSM_printseasons

This program is meant for viewing seasonality parameters stored in a Timesat .tpa file.
When started from TSM_menu the program will prompt you to respond to the questions below

Question Explanation
Give name of input fitted Name of input file (only when started from
data file the command prompt)
First row: First row in processing window
Last row: Last row in processing window
First column: First column in processing window
Last column: Last column in processing window
Name of output text file Name of the output file
(hit Enter to print to screen):

79

Seasonality parameters will be shown for the first pixel window. By hitting Enter you can
view parameters for the remaining pixels in the window. To abort the program press ctrl-c.

10.13 TSM_viewfits

This program is meant for viewing data stored Timesat .tts files. The program will prompt
you to respond to the questions below

Question Explanation
Give name of input Name of input .tts files (raw and/or fit).
data files
First row: First row in processing window
Last row: Last row in processing window
First column: First column in processing window
Last column: Last column in processing window

A plot window in Matlab will open with fitted data for the first pixel. By hitting Enter you
can view the remaining pixels in the window. You will need to close the plotting window
manually. To abort the program press ctrl-c.

10.14 TSF_fit2time

This program extracts time-series data (raw or fitted) for one or many pixels and writes to an
ASCII file. When starting from TSM_menu you will be asked to choose a .tts file containing
the data. A number of questions will follow. Extracted data are written row by row (see
sections 9.8 and 2.1).

Question Explanation
Name of input fitted data file Name of input file (only when started from
(infile) the command prompt)
Specify image window to extract Provide first row, last row, first column, last
data for (frow, lrow, fcol, lcol) column of window to be processed
Name of output file: Name of ASCII file containing the resulting data.
(outfile) This file will contain a header with number of years,

number of points per year, and number of time-series.
Data values for pixels are written row by row.

Command line
TSF_fit2time infile frow lrow fcol lcol outfile

10.15 TSF_fit2img

Creates one or several vegetation index images from the fitted data by the fitting methods
Gaussian, Logistic or Savitzky-Golay. When starting from TSM_menu you will be asked to
choose a .tts file containing fitted data. A dialogue appears:

80

Question Explanation
Name of input fitted data file Name of input file (only when started from
(infile) the command prompt)
Code to give to missing pixels Provide a numerical code to replace missing
(misspix) data with in output files. This code should be

outside the range of the input data
Name of output file (no extension): Name of output binary image file(s), without
(outfile) file extension. Do not use spaces.
Specify the file type for the Give an integer code 1-3 specifying the output
output image files (1,2 or 3) data. This should correspond to the data type
1 = 8-bit binary of the original input data.
2 = 16-bit signed integer
3 = 32-bit real
Image no. to map (−1 = all) Sequence number of the time for which the

fitted data should be mapped. Give −1 to map
all data.

Command line
TSF_fit2img infile misspix outfile filetype image no.

The program will run and generate binary image files containing the fitted data values. A
sequence number will be appended to the name specified in the dialogue. Image files can be
viewed with TSM_imageview.

10.16 TSF_seas2img

Program for creating an image from the seasonality data generated by Timesat. Starts by
asking for the file of a seasonality .tpa file and this is followed by dialogue below:

81

Question Explanation
Name of input seasonality file Name of input file (only when started from
(infile) the command prompt)
Seasonal parameter to output Provide a numerical code for the desired
(seaspar) parameter to output according to the list given
Specify dates between which Give two sequence numbers defining the start
the season is expected to occur and end dates between which the seasonal maximum
(datemin datemax) is found. (In previous TIMESAT versions the full

season had to be found within these dates.)
To ensure that the full season is captured the
interval can be made somewhat wider than the
expected season. For detailed explanation see
Part II Algorithm Theoretical Basis section 6.3

Code to put if season is not Give an integer missing data code to assign
found between min and max dates. pixels where no seasonal maximum was found between
(missseason) the dates specified
Code for missing pixel for Give an integer missing data code representing
other reason missing data for other reasons than the above,
(misspix) e.g. due to failure to fit one of the functions

due to too many missing input data values for
that pixel

Name to append to output files Name of output files (no spaces, no file
(outfile no extension!)
Specify the file type for the Format of binary output files
output image files (2 or 3)
2 = 16-bit signed integer (values
will be rounded to nearest integer)
3 = 32-bit real (no rounding)
Command line
TSF_seas2img infile seaspar datemin datemax misseason misspix nameout filetype

The following output files will be generated:

name_s1 Binary file of data for the first season found within the interval
name_s2 Binary file of data for the second season found within the interval

(if dual seasons exist)
name_nseas Binary file containing the number of seasons
name_errors.txt ASCII file of errors. Usually empty.

10.17 TSF_merge

Merges .tts or .tpa files for adjacent areas. Useful if TSF_process has been run for smaller
windows that need to be merged. Files must be adjacent and can be merged by row (N-S) or
by column (E-W). The order of input files matters and must be from top down (merging by
row), or from left to right (merging by column). Dialogue

82

Question Explanation
Merge by columns (0) or by rows (1) Mode of merging
Give number of input data files to be merged No. of input files
Give name of file 1 Name of .tts or .tpa file
Name of output file Name of merged .tts or .tpa file
Command line
TSF_merge rowmerge nfiles infile1 infile2 ...outfile

10.18 Running from the command prompt to automate processing

TSF_process and the other Fortran programs can be executed without first starting Matlab.
It is then necessary to reference the full program including the path (e.g.
c:\TIMESAT33\timesat_fortran\main\TSF_process), or to add the program folders to the
DOS or Linux path. An alternative is to copy the executable files into the run directories and
execute from there. In Windows the programs are named *.exe and in Linux they are named
*.x64 (e.g. TSF_process.x64).

It is possible to automate processing by starting jobs from script files that can execute a series
of Timesat commands, e.g.:

TSF_process sahel.set
TSF_fit2img sahel_fit.tts 0 sahel_image.rst 3 -1
TSF_seas2img sahel_TS.tpa 3 33 75 0 0 length 3

In Windows the script file must be named *.bat and is executed by typing the name at the
command prompt. In Linux any name could be used.

10.19 Working in Linux as compared to Windows

Most Timesat functions in the Linux version are identical to those in Windows (as described
in this manual), however certain differences exist. Notably, all file directories are specified
with a forward slash (/) instead of the backward slash. Furthermore, execution of the Fortran
programs differs somewhat between Windows and Linux. First of all, it may be necessary to
modify the file rights to allow execution of the Fortran executables in timesat_fortran/main
and timesat_fortran/tools. This can be done using the command: chmod 755 *.x64. A
further modification that may be necessary if processing a large number of files is to execute
the following line (or add to the .bashrc file): ulimit -n 2400 (allows opening of up to
2400 files simultaneously).
When executing a Fortran command from Timesat, no command window is opened, but the
commands are executed under the Matlab prompt using the ! (bang) command. Also other
system commands will have to be executed from the Matlab prompt in the same way (e.g.
!more output to monitor the progress of TSF_process). Alternatively a shell window can be
opened and the Fortran programs executed from there. In that case the path to the Fortran
executables must be appended to the Linux path:

PATH=/myhome/timesat33/timesat_fortran/main:/myhome/timesat33/timesat_fortran/tools:$PATH

83

This is necessary when running parallel jobs in the precompiled Timesat version, since no
command line is directly accessible from Timesat. Execution of a script residing in the
current directory is done with the command: ./script_file. The script file generated
when processing in parallel is written with bash shell commands. Other shells may require
modification of this file.

10.20 Input files for TIMESAT

Vegetation index image files

Image data to be processed in Timesat, e.g. data from a satellite sensor, should be formatted
as headerless (flat) binary files, organized as sequential data streams by column and row.
Values can be stored as 8-bit integer (0 – 255), 16-bit signed integer (−32767 to +32768), or
32-bit real (decimal values between 1.2 × 10−38 and 3.4 × 1038). One file is used for storing
a single image. This is a generic format that can be imported/exported by most image
processing software. The user has to keep track of the organization into columns and rows.
Timesat is image oriented and does not consider geographical coordinate systems other then
column and row. Column and row numbers begin with 1.

Quality image files

These files contain numeric values corresponding to the observation quality of the image data.
The file format and organization should be identical to that of the the vegetation index image
data. The quality values will be translated into a maximum of three classes. Numeric values
that will belong to a certain weight class need to be grouped, e.g. 1 – 10 corresponding to
the weight 0.1, 11 – 20 corresponding to the weight 0.5, and 21 to 30 corresponding to the
weight 1.0. The assignment of weights, e.g. 0.1, 0.5 and 1.0 is defined in a settings file and
determine the weight of the data point in the least-squares fit. A weight of zero will mean
that the observation is excluded from the fit.

Image file lists

ASCII files containing the names of all binary input files. One separate file list should exist
for all vegetation index image files and one for all quality image files. The format is as follows:

N
path\imagename_1
path\imagename_2
....

path\imagename_N

where N is the number of image files. File names of image should be in chronological order,
and include the complete path to the file, unless the files are located in the working directory
from which Timesat is run. Only the N first images in the file will be processed.

84

ASCII data file

This is a file containing data organized as separate time-series for one or more locations. The
file should be formatted as follows:

nyear nptperyear nts

y1 y2 ... yN
y1 y2 ... yN

y1 y2 ... yN

nts

where nyears gives the number of years spanned by the time-series, nptperyear is the number
of data values in one year, and nts is the number of data points. All time-series in the file
need to have identical numbers of years and data values per year.

Land cover file

This is a binary image file, organized like the binary vegetation index image files, and with
identical geometry and file format. Land cover codes should be integer numbers 0 – 255. If
stored as real numbers these will be rounded to the nearest integers.

Settings file

This is an ASCII file containing settings for running TSF_process or TSM_process. It should
reside in the run directory. The file is created and modified using TSF_settings, but can also
be edited with an ASCII file editor. The file contains information and one comment per row.
The table below shows the layout of the file (see also section 5.3 for a detailed description of
the settings).

Row Example Short description Explanation
1 Version: 3.3 Keeps track of the settings file version
2 west_africa Job name Job name (no blanks) - max 100 chars.

This will determine the name of output
files from Timesat

3 1 Image/series mode (1/0) 1 = image mode, 0 = ASCII time-series
4 0 Trend (1/0) 1 = STL trend fitting activated.

Overrules choice of fitting method (row 32).
5 1 Use quality data (1/0) 1 = use quality data, 0 = do not use

quality data
6 datalist.txt Data file list/name Name, followed by %, of file list (for

images) or data file name (for ASCII data).
7 quallist.txt Quality file list/name Name, followed by %, of quality list (for

images) or quality file name (for ASCII data)
8 1 Image file type 1 = 8-bit unsigned integer, 2 = 16-bit

signed integer, 3 = 32-bit real
9 0 Byte order (1/0) 0 = little endian byte order, 1 = big

endian byte order (for 16-bit integers)

85

10 200 200 Image dimension No. of rows in image, and no. of
columns per row

11 111 120 91 100 Processing window Window to process (start row, end row,
start column, end column)

12 3 36 Years and points per year No. of years and no. of points per year
13 1 255 Valid data range Lower and upper data values for valid

range. Data outside range will be
assigned weight 0

14 1 12 0.1 Quality range 1 and weight Lower and upper values for quality
class 1 and assigned weight

15 13 22 0.5 Quality range 2 and weight Lower and upper values for quality
class 2 and assigned weight

16 23 31 1 Quality range 3 and weight Lower and upper values for quality
class 3 and assigned weight

17 0 Amplitude cutoff value Cutoff for low amplitude. Series with
amplitude smaller than this value will
not be processed. 0 processes all data

18 0 Debug (3/2/1/0) Debug flag. 1 - 3 = print debug data,
0 = do not print debug data

19 1 1 0 Output files (1/0 1/0 1/0) Flags for output data (seasonality,
fitted data, and original data)

20 0 Use land cover (1/0) 1 = use land cover map, 0 = do not use
land cover map

21 landcoverdata Name of land cover file Name, followed by %, of land cover file
22 1 Spike method (3/2/1/0) Spike method. 3 = weights from STL

multiplied with original weights,
2 = weights from STL,
1 = method based on median filtering,
0 = no spike filtering

23 2 Spike value If spike method = 1 the spike value
determines the degree of spike removal.
A low value will remove more spikes

24 0 STL stiffness value Parameter for STL trend stiffness.
Varies between 1.0 and 10.0; default = 3.0.

25 2 No. of land cover classes No. of land cover classes (if land
cover data are used)

26 ************ Separator After separator comes class specific
parameters

27 1 Land cover code for class 1 Land cover code for class 1
28 1 Seasonality parameter (0-1) A value near 1 will attempt to fit one

season per year, a value close to zero
will attempt to fit two seasons

86

29 3 No. of envelope iterations No. of iterations for upper envelope
(3/2/1) adaptation (3,2,1). Choosing 1 means no

envelope adaptation.
30 2 Adaptation strength (1-10) Strength of the envelope adaptation.

10 is the maximum strength
31 0 0 Force to minimum (1/0) and Force to minimum. 1 = points below

value of minimum given minimum value will be forced to
the specified minimum value. 0 = no
forcing to value

32 3 Fitting method (3/2/1) Fitting method. 3 = double logistic, 2 =
asymmetric Gauss, 1 = Savitzky-Golay
If STL trend fitting activated (row 4)
this overrides the fitting method

33 1 Weight update method Weight update method (not in use)
34 4 Window for Savitzky-Golay Half window for Savitzky-Golay filtering.

A large value of the window will give
a high degree of smoothing

35 0 Reserved Not in use
36 0 Reserved Not in use
37 1 Season start start/end Method for determining start/end of

method (4/3/2/1) season based on intersection of the
fitted curve. 4 = STL trend: at the
intersection with the trend line from
STL. 3 = Relative amplitude: at the
point where the curve intersects a
proportion of the relative seasonal
amplitude. 2 = Absolute value: at the
point where the curve intersects an
absolute value in units of the data.
1 = at the point where the curve
intersects a proportion of the
seasonal amplitude.

38 0.5 0.5 Season start / end values Values for determining season start/end
If start method is 1 or 3 the values
must be between 0 and 1

39 – Separator and data Same as rows 26–38, but for class 2
51 for class 2
52 – Separator and data Same as rows 26–38, but for class 3
64 for class 3
· · · · · · · · · etc. for a maximum of 255 classes

87

10.21 Output files for TIMESAT

TSF_process and TSM_process generate three types of data: (1) seasonality data, written to
the file jobname_TS.tpa, (2) fitted functions, written to the file jobname_fit.tts, and (3)
original data, written to the file jobname_raw.tts. The jobname is supplied in the settings
file and can be any name with maximum 100 ASCII characters, but no spaces.

File with seasonality data

The .tpa files contain extracted Timesat seasonality parameters and have the following
structure:

nyears nptperyear rowstart rowstop colstart colstop

row1 col1 n1
p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13
p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13

...
p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13

n1 lines with values

one line per season

row2 col2 n2
p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13
p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13

...
p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13

n2 lines with values

one line per season

...
rowM colM nM
p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13
p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13

...
p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13

nM lines with values

one line per season

Here n1, n2, . . . , nM give the number of full seasons for which seasonality information have
been determined. This information is followed by seasonality parameters p1, p2, ..., p13 (see
section 4.4) for each of the the full seasons. The variables row, col, and n are 32-bit inte-
gers whereas seasonality parameters p1, p2, ..., p13 are written as 32-bit single precision real
numbers.

88

Files with time-series

The .tts files contain fitted data and original data and have the following structure:

nyears nptperyear rowstart rowstop colstart colstop

row1 col1

y1 y2 y3 . . . yN−1 yN

row2 col2

y1 y2 y3 . . . yN−1 yN
...

rowM colM

y1 y2 y3 . . . yN−1 yN

where nyears gives the number of years spanned by the time-series, nptperyear is the number
of data values in one rowstart, rowstop, colstart and colstop are variables defining the
processing window, row1, row2, . . . , rowM are row numbers, col1, col2, . . . , colM are column
numbers, and y1, y2, . . . , yN are the fitted or original data values. If input is from an ASCII
file, columns will always be set to one. The variables nyears, nptperyear, rowstart, rowstop,
colstart, colstop, row1, . . . , rowM , col1, . . . , colM are 32-bit integers, whereas y1, . . . , yN are
32-bit real data. Apart from the output files generated in TSF_process and TSM_process,
ASCII files containing information for single file locations are generated in TSM_GUI. Files
generated in the post-processing programs TSF_fit2time, TSF_fit2img and TSF_seas2img
are described under each of these chapters.

10.22 Index files

Timesat generates index files that allow for faster access of the output data files. The output
files can be very large, and the index files can considerably speed up access to specific locations.
This is particularly noticed when plotting data using e.g. the routines TSM_printseasons
and TSM_viewfits. The index files have the extension .ndx, and are automatically generated
when running the post-processing programs mentioned above, if required. They can also be
generated from the TSM_menu under File. The format is described in chapter 6.5.

11 Acknowledgements

Support from the Swedish National Space Board, the Crafoord foundation, and the Swedish
Research Council FORMAS is gratefully acknowledged. The authors are thankful for all
encouragement, comments and suggestions for improvements from the Timesat user commu-
nity. We would especially want to thank Hua Yuan, Beijing Normal University, Claudia de
Pus, Gent, and colleagues at Lund University: Jonas Ardö, Zhanzhang Cai, Roger Groth,
Margareta Hellström and Hongxiao Jin.

89

12 References

Barichivich, J., Briffa, K.R., Myneni, R.B., Osborn, T.J., Melvin, T.M., Ciais, P., Piao, S. and
Tucker, C. (2013), Large-scale variations in the vegetation growing season and annual cycle
of atmospheric CO2 at high northern latitudes from 1950 to 2011, Global Change Biology,
19, 3167-3183.

Beck, P.S.A., Jönsson, P., Högda, K.-A., Karlsen, S. R., Eklundh, L. and Skidmore, A.K.,
2007, A ground-validated NDVI dataset for monitoring vegetation dynamics and mapping
phenology in Fennoscandia and the Kola peninsula. International Journal of Remote Sensing,
28, 4311-4330.

Cleveland, R.B., Cleveland,W.S., McRae, J.E., and Terpenning, I., 1990, STL: A Seasonal-
Trend Decomposition Procedure Based on Loess. Journal of Official Statistics, 6, 3-73.

Eklundh, L., Johansson, T. and Solberg, S., 2009, Mapping insect defoliation in Scots pine
with MODIS time-series data. Remote Sensing of Environment, 113, 1566-1573.

Eklundh, L. and Jönsson, P., 2003, Extracting Information about Vegetation Seasons in Africa
from Pathfinder AVHRR NDVI Imagery using Temporal Filtering and Least-Squares Fits to
Asymmetric Gaussian Functions. In Image and Signal Processing for Remote Sensing VIII.
Proceedings of SPIE Vol 4885, S.S. Serpico (Ed.), 215-225. Society of Photo-Optical Instru-
mentation Engineers).

Eklundh, L. and Olsson, L., 2003, Vegetation index trends for the African Sahel 1982-1999.
Geophysical Research Letters, 30, 1430-1433.

Fensholt, R. and Proud, S.R. (2012), Evaluation of Earth Observation based global long term
vegetation trends Ů Comparing GIMMS and MODIS global NDVI time series, Remote Sens-
ing of Environment, 119, 131-147.

Gao, F., Morisette, J.T., Wolfe, R.E., Ederer, G., Pedelty, J., Masuoka, E., Myneni, R., Tan,
B. and Nightingale, J., 2008, An algorithm to produce temporally and spatially continuous
MODIS-LAI time-series, IEEE Geoscience and Remote Sensing Letters, 5.

Heumann, B.W., Seaquist, J. W., Eklundh, L. and Jönsson, P., 2007, AVHRR Derived Pheno-
logical Change in the Sahel and Soudan, Africa, 1982 - 2005. Remote Sensing of Environment,
108, 385-392.

Hickler, T., Eklundh, L., Seaquist, J., Smith, B., Ardö, J., Olsson, L., Sykes, M. and Sjöström,
M., 2005, Precipitation controls Sahel greening trend. Geophysical Research Letters, 32,
L21415.

Hird, J. and McDermid, G.J., 2009, Noise reduction of NDVI time series: An empirical com-
parison of selected techniques. Remote Sensing of Environment, 113(1), 248 -258.

Jamali, J., Jönsson, P., Eklundh, L., Ardö, J. and Seaquist, J., 2015, Detecting changes in
vegetation trends using time series segmentation. Remote Sensing of Environment, 156, 182-
195.

Jönsson, P. and Eklundh, L., 2002, Seasonality extraction by function fitting to time-series of
satellite sensor data. IEEE Transactions on Geoscience and Remote Sensing, 40, 1824-1832.

90

Jönsson, P. and Eklundh, L., 2003, Seasonality extraction from time-series of satellite sen-
sor data. In Frontiers of Remote Sensing Information Processing, C.H. Chen (Ed.), 487-
500.(World Scientific Publishing).

Jönsson, P. and Eklundh, L., 2004, TIMESAT - a program for analysing time-series of satellite
sensor data. Computers and Geosciences, 30, 833-845.

Jönsson, A.M., Eklundh, L., Hellström, M., Bärring, L. and Jönsson, P., 2010, Annual changes
in MODIS vegetation indices of Swedish coniferous forests in relation to snow dynamics and
tree phenology, Remote Sensing of Environment, 114, 2719-2730.

Kanzow, C., Yamashita, N., and Fukushima, M., 2002, Levenberg-Marquardt methods for
constrained nonlinear equations with strong local convergence properties.

Le Page, Y., Oom, D., Silva, J.M.N., Jönsson, P. and Pereira, J.M.C., 2010, Seasonality of
vegetation fires as modified by human action: observing the deviation from eco-climatic fire
regimes. Global Ecology and Biogeography, 19, 575-588.

Madsen, K., Nielsen, H.B., and Tingleff, O., 2004, Methods for non-linear least squares prob-
lems, Informatics and Mathematical Modeling (IMM), Technical University of Denmark.

Nielsen, H.B., 1999, Damping parameter in Marquardt’s method, Technical Report IMM-
REP-1999-05, Informatics and Mathematical Modeling (IMM), Technical University of Den-
mark.

Nielsen, H.B., 2000, Separable nonlinear least squares, Technical Report IMM-REP-2000-01,
Informatics and Mathematical Modeling (IMM), Technical University of Denmark (2000).

Olofsson, P. and Eklundh, L., 2007, Estimation of absorbed PAR across Scandinavia from
satellite measurements. Part II: modeling and evaluating the fractional absorption. Remote
Sensing of Environment, 110, 240-251.

Olofsson, P., Eklundh, L., Lagergren, F., Jönsson, P. and Lindroth, A., 2007, Estimating
Net Primary Production for Scandinavian forests using data from Terra/MODIS. Advances
in Space Research, 39, 125-130.

Olofsson, P., Lagergren, F., Lindroth, A., Lindström, J., Klemedtsson, L., Kutsch, W. and
Eklundh, L., 2008, Toward Operational Remote Sensing of Forest Carbon Balance across
Northern Europe. Biogeosciences, 5, 817-832.

Olsson, L., Eklundh, L. and Ardö, J., 2005, A recent greening of the Sahel - trends, patterns
and potential causes. Journal of Arid Environments, 63, 556-566.

Press, W.H., Teukolsky, S.A., Vetterling, W.T., and Flannery, B.P., 1994, Numerical Recipes
in Fortran, Cambridge University Press.

Seaquist, J.W., Hickler, T., Eklundh, L., Ardö, J. and Heumann, B., 2009, Disentangling the
effects of climate and people on Sahel vegetation dynamics. Biogeosciences, 6, 469-477.

Seaquist, J.W., Olsson, L., Ardö, J. and Eklundh, L., 2006, Broad-scale increase in NPP
Quantified for the African Sahel, 1982-1999. International Journal of Remote Sensing, 27,
5115-5122.

Sjöström, M., Ardö, J., Eklundh, L., El-Tahir, B.A., El-Khidir, H.A.M., Hellström, M.,

91

Pilesjö, P. and Seaquist, J., 2009, Evaluation of satellite based indices for gross primary
production estimates in a sparse savanna in the Sudan. Biogeosciences, 6, 129-138.

Schubert, P., Eklundh, L., Lund, M. and Nilsson, M., 2010, Estimating northern peatland
CO2 exchange from MODIS time series data, Remote Sensing of Environment, 114, 1178-
1189.

Schubert, P., Lagergren, F., Aurela, M., Christensen, T., Grelle, A., Heliasz, M., Klemedts-
son, L., Lindroth, A., Pilegaard, K., Vesala, T., Eklundh, L., 2012, Modeling GPP in the
Nordic forest landscape with MODIS time series data - comparison with the MODIS GPP
product, Remote Sensing of Environment, vol. 126, 136-147.

Sjöström, M., Ardö, J., Arneth, A., Cappelaere, B., Eklundh, L., de Grandcourt, A., Kutsch,
W. L., Merbold, L., Nouvellon, Y., Scholes, B., Seaquist, J. and Veenendaal, E. M., 2011,
Exploring the potential of MODIS EVI for modeling gross primary production across African
ecosystems. Remote Sensing of Environment, 115, 1081-1089.

Stisen, S., Sandholt, I., Norgaard, A., Fensholt, R. and Eklundh, L., 2007, Estimation of
diurnal air temperature using MSG SEVIRI data in West Africa. Remote Sensing of Envi-
ronment, 110, 262-274.

Tottrup, C., Schultz Rasmussen, M., Eklundh, L. and Jönsson, P., 2007, Mapping fractional
forest cover across the highlands of mainland Southeast Asia using MODIS data and regres-
sion tree modelling. International Journal of Remote Sensing, 28, 23-46.

Verbesselt, J., Jönsson, P., Lhermitte, S., van Aardt, J. and Coppin, P., 2006, Evaluating
satellite and climate data derived indices as fire risk indicators in savanna ecosystems. IEEE
transactions of Geoscience and Remote Sensing, 44, 1622.

Verbesselt, J., Hyndman, R., Newnham, G. and Culvenor, D. (2010) Detecting trend and
seasonal changes in satellite image time series. Remote Sensing of Environment, 114, 106-115

Yuan, H., Dai, Y., Xiao, Z., Ji, D. and Shangguan, W. (2011), Reprocessing the MODIS Leaf
Area Index products for land surface and climate modelling, Remote Sensing of Environment,
115, 1171-1187.

92

	Introduction
	About TIMESAT and the software manual
	TIMESAT version 3.3 vs. version 3.2
	TIMESAT home page
	Using and citing TIMESAT
	Applications of TIMESAT
	About the authors

	Overview of data processing
	Sequential data
	Image data

	Methodology
	Least-squares fitting
	On the use of ancillary quality data for assigning weights
	Pre-processing to remove spikes and outliers
	Adaption to the upper envelope
	Determination of the number of seasons
	Adaptive Savitzky-Golay filtering
	Fits to asymmetric Gaussians and double logistic functions
	Separable non-linear least-squares fits
	Merging of local functions
	Seasonal trend decomposition

	Extraction of seasonality parameters
	Seasonality parameters derived from time-series spanning n years
	Extracting seasonality parameters from one year of data
	Defining start and end of season
	Extracted seasonality parameters

	Aspects of processing
	Characteristics of the processing methods
	Controlling the processing: input settings
	Description of input settings

	Output data
	Files with time-series: *.tts
	Files with seasonality parameters: *.tpa
	Files with output from STL trend analysis
	Extracting images of seasonality parameters
	Output files from ASCII data
	Index files

	Installation of TIMESAT and program structure
	System requirements
	Installation

	Program and processing overview
	Processing logic
	Naming convention of programs
	Program versions

	Getting started with TIMESAT – a quick tutorial
	Preparing the data
	Starting the TIMESAT menu system
	TSM_imageview
	TSM_GUI
	TSM_settings
	TSF_process
	TSF_process parallel
	Post-processing the results of a TSF_process run
	Checklist for processing new vegetation index image data

	Reference manual
	TSM_menu
	TSM_imageview
	TSM_GUI
	Data input for TSM_GUI
	Settings in TSM_GUI
	Output files from TSM_GUI
	TSM_settings
	TSF_process
	TSF_process parallel
	TSF_readheader (obsolete)
	TSM_fileinfo
	TSM_printseasons
	TSM_viewfits
	TSF_fit2time
	TSF_fit2img
	TSF_seas2img
	TSF_merge
	Running from the command prompt to automate processing
	Working in Linux as compared to Windows
	Input files for TIMESAT
	Output files for TIMESAT
	Index files

	Acknowledgements
	References

