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Two methods for processing time-series of satellite sensor data are presented.
The first method is based on an adaptive Savitzky-Golay filter, and the sec-
ond on non-linear least-squares fits to asymmetric Gaussian model functions.
Both methods incorporate qualitative information on cloud contamination from
ancillary datasets. The resulting smooth curves are used for extracting pheno-
logical parameters related to the growing seasons. The methods are applied to
NASA/NOAA Pathfinder AVHRR Land Normalized Difference Vegetation Index
(NDVI) data over Africa giving spatially coherent images of phenological parame-
ters such as beginnings and ends of growing seasons, seasonally integrated NDVI,
seasonal amplitudes etc. The results indicate that the two methods complement
each other and that they may be suitable in different areas dependmg on the
behavior of the NDVI signal.

1. Introduction

To extract seasonality information it is necessary to generate smooth time-series
from noisy satellite sensor data. This can be achieved by applying simple filters
or by function fitting. A commonly used filtering method, BISE!, is easy to im-
plement, but makes the usually erroneous assumption that all noise is negatively
biased. Methods based on e.g. Fourier series?? or on least-squares fits to sinusoidal
functions*~% perform well if the shape of the time-profile is characterized by a well-
defined annual cycle of growth and decline, but may fail when the time-profile is
more ambiguous. Although most vegetation-covered areas are characterized by a
clear annual growth and decline pattern, the shape of the time-profile may vary
significantly between different bio-climatic zones. In some areas the time-profile is
simple, allowing for the fitting of sinusoidal or bell-shaped functions. In other ar-
eas, particularly arid areas where the growing season is very short, the time-profile
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has quite a different shape, and simple functions are often unable to describe the
data. For this reason it is necessary to consider methods that are based on different
assumptions regarding the shape of the annual time-profile. We present and test
two new methods; adaptive Savitzky-Golay filtering with no prior assumptions on
the time-profile, and non-linear least-squares fits to asymmetric Gaussians with the
rather weak assumption that the growing season is characterized by a well-defined
increase up to a peak level from which it declines until its end.

2. Data

The new methods are tested with the NASA/NOAA Pathfinder AVHRR Land
(PAL) 8 km by 8 km database”®. These data are well documented and have been
used for global and regional studies for a number of years. Normalized Difference
Vegetation Index (NDVI)Q, rather than single-channel data, are used due to the ob-
served relationships between the index and vegetation productivity'®~!3. Data are
10-day (decadal) maximum-value composites to reduce the effects of cloudiness!4.
Most remaining noise in the time-series is negatively biased, however, some pos-
itively biased noise occurs, e.g. due to anisotropic effects, sensor problems etc'®.
Although efforts have been made to calibrate PAL data for sensor differences, geom-
etry and atmospheric disturbances, quality problems remain'%. The CLAVR cloud
flag channel is used as a simple indicator of data quality. In CLAVR universal
thresholds in all the five AVHRR channels are used to classify pixels as clear, mixed
and cloudy”. CLAVR data has been shown to underestimate clear pixels'®. Despite
this deficiency the information can be used to improve NDVI estimates'®.

3. Methodology

We start by a general description of least-squares fits to an upper envelope. This is
followed by an account on how to determine the number of annual seasons together
with the approximate positions of their maxima and minima. The details of the
adaptive Savitzky-Golay filter and the non-linear fitting to asymmetric Gaussians
are given, and finally the extraction of seasonality information is discussed. The
presented methods are implemented in a Fortran 90 program named TIMESAT
and we refer to Jénsson and Eklundh?%?! for computational aspects.

3.1. Least-squares fits to an upper envelope

Suppose that we have a time-series (t;, I;), i = 1,2, ..., N and a model function f(t)
of the form

f(t) = c1p1(t) + capa(t) + ... + empm(t), (1)

where @1 (t), p2(t), . .., pam(t) are given basis functions. Then the best values, in the
least-squares sense, of the parameters ci, ¢z, ..., cym are obtained as the solution of
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the system of normal equations

ATAc=ATb, (2)
where
_pilt) _ L
Aij = o bs—gi- (3)

Here, o0; is the measurement uncertainty of the ith data point. If these are not
known they may all be set to the constant value o = 1. To estimate the uncertainty
of the NDVI data points, the PAL cloud flag channel (CLAVR) can be used. There
are no general rules as for how the cloud information should be transformed into
uncertainty estimates and judicious settings are up to the user. For the runs over
Africa presented in this paper the uncertainty parameters are set to 1.0, 1.5 or
100.0 for data values corresponding to the CLAVR classes clear, mixed and cloudy.
To take into account the fact that most noise, even for data classified as clear by
CLAVR, is negatively biased, the determination of the parameters c;,cs,...,en
of the model function is done in two steps?>?!. In the first step the parameters
are obtained by solving the system of normal equations with ¢; obtained from the
ancillary data. Data points above the model function of the first fit are thought of
as being more important, and in the second step the system is solved with the o; of
the high data points decreased by some factor. The multi-step procedure leads to a
model function that is adapted to the upper envelope of the data (Figure 1).

40 60
time (decads)

Fig. 1. Fitted functions from a two-step procedure. The dashed line shows a fitted function from
the first step, and the solid line the fit from the second step.

3.2. Determination of the number of seasons

The high level of noise often makes it difficult to determine the number of annual
seasons based on data for only one year. Including data from surrounding years
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reduces the risk for erroneous determinations dramatically. In this work data values
(ti, I;), i =1,2,...,N for three years are fitted to a model function

f)=ca+ect+ eat® 4 ca sin(wt) + ¢ cos(wt)
+ ¢g sin(2wt) + ¢7 cos(2wt) + cg sin(3wt) + cg cos(3wt) (4)

where w = 6x/N. With 10-day data used in this study N = 108. The first three
basis functions determine the base level and the three-year trend whereas the three
pairs of sine and cosine functions correspond to, respectively, one, two and three -
annual seasons. The fitting procedure always gives three primary maxima and min-
ima. In addition, secondary and tertiary maxima and minima may be found. If the
amplitude of the secondary maxima exceeds a certain fraction of the amplitude of
the primary maxima, there are two annual seasons. If the amplitude of the sec-
ondary maxima is low the number of annual seasons is set to one. In Figure 2 (a)
the primary maxima and minima dominate and the number of seasons is set to one.
In Figure 2 (b) the secondary maxima and minima are comparatively large and the
number of annual seasons is set to two.

scaled NDVI

40 60 T 60
time (decads) time (decads)

Fig. 2. Fits of sinusoidal functions and second order polynomials to three years of data in regions
dominated by (a) one annual season and (b) two annual seasons. The thin solid line represents the
original NDVI data. The thick solid line shows the fitted function.

3.3. Locally adapted Savitzky-Golay filtering
Savitzky-Golay filters are based on local polynomial fits?2. For each point i =
1,2,..., N a quadratic polynomial

f#)=c1+eat + C3t2 (5)

is fit to all 2n+1 points in a window. The filtered value is then set to the polynomial
value at this point. To account for the negatively biased noise, the fitting is done in
multiple steps as described in the previous section. The result is a smoothed curve
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that follows the upper envelope of the NDVI values. The width n of the moving
window determines the degree of smoothing, but it also affects the ability to follow a
rapid change. In TIMESAT two values of n can be set by the user. The first is used
for data representing one annual season and the second for data representing two.
Since, for large geographical areas, we are dealing with NDVI curves of different
character it is desirable to use an adaptive method for n. Even if the global settings
of the moving window work fairly well, it is sometimes necessary to locally tighten
the window. A typical situation is in arid areas where the vegetation sometimes
responds almost instantaneously to rainfall. To capture the corresponding sudden
rise in data values, only a small window can be used. In TIMESAT the Savitzky-
Golay filtering is performed using the global value n of the window. The filtered data
are then scanned and if there is a large increase or decrease in an interval around a
data point i, this data point will be associated with a smaller window. The filtering
is then redone with the new locally adapted sizes of the window. Savitzky-Golay
filtering with and without the adaptive procedure is illustrated in Figure 3.

40 60 80 40 60
time (decads) time (decads)

Fig. 3. Upper envelope Savitzky-Golay filtered data. Time is in ten day steps. In (a) the filtering
is done with n = 5, which obviously is too large for the filtered data to follow the sudden increase
and decrease of the underlying data values. A scan of the filtered data identifies the data points
for which there is a large increase or decrease in surrounding intervals. Setting n = 3 for these
points and redoing the filtering gives the curve in (b). Note the improved fit at the rising edges
and at the narrow seasonal peaks.

3.4. Least-squares fits to asymmetric Gaussian functions

In the asymmetric Gaussian method local model functions

f(t) = f(t; 1, 02,01, ..., a5) = c1 + c29(t; @y, ..., a5), (6)
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are fitted to data in intervals around maxima and minima. Here
a3
exp [— (3;—‘:1) ] if t>a
g(ts 0‘,1,‘..,05) = as (7)
exp [— (31;‘) ] if t<ag

a4

is a Gaussian-type function. The linear parameters ¢; and ¢y determine the base
level and the amplitude. For the Gaussian function, a; determines the position of .
the maximum or minimum with respect to the independent time variable ¢, while
az and a3 determine the width and flatness (kurtosis) of the right function half.
Similarly, a4 and as determine the width and flatness of the left half. The local
model functions are well suited for describing the shape of the scaled NDVI time-
series in overlapping intervals around maxima and minima. Given a set of data
points in an interval (¢;, I;), i = ny,...,ny around a maximum or a minimum, the
parameters cj, ¢z and ay, ..., a5 are obtained by minimizing the merit function

g . _ X 2
2 = Z [f(tucl,cz,'f:',---,as) It:| ’ @

The function depends non-linearly on the parameters a1, ...,as and in the program
the minimization is done using an adaptive quasi-Newton method?3. As in the
previous cases the fitting is done in steps to account for the negatively biased noise.
Given three local asymmetric Gaussian functions describing the left minimum, the
central maximum and the right minimum (Figure 4 a), a global function fit can be
built that describes the central season (Figure 4 b). The merging of local functions
to a global function is a key feature of the method that increases the flexibility and
allows the fitted function to follow a complex behavior of the time-series?°.

position 350 263 position 350 263

s (0)

scaled NDVI
8

scaled NDVI

time (decads)

Fig. 4. (a) left (L)), central (C) and right (R) local Gaussian functions. (b) merged global function.
Note that the merged function in (b) only describes the vegetation of the central season from round
decade 50 to decade 83. To describe vegetation of the left or right season additional local functions
should be fitted and merged to global functions.
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3.5. Extraction of seasonality parameters

Seasonal data are extracted for each of the growing seasons of the central year (Fig-
ure 5). Starting from the left base level or minimum, the beginning of a season is
defined from the filtered or fitted functions as the point in time for which the value
has risen by a certain amount, currently set to 10 % of the distance between the
left base level and the maximum. The end of the season is defined in a similar way.
The mid or the peak of a season is difficult to define, but a reasonable estimate is
obtained as the position midway between the 90 % level positions above the left
and right base levels. The annual integrated NDVTI is frequently used in estimates
of net primary production?~27 through the relationship between NDVI and ab-
sorbed photosynthetically active radiation (APAR)'2. To give a good estimate of
the production of the phenologically dominant vegetation type it is also of interest
to compute the integrated NDVI over the growing season, i.e. between the start and
end of the season. In TIMESAT a small integral is defined as the area under the
curve down to the mean of the left and right base levels. A large integral, extending
to zero, is also defined.

210,

scaled NOVI
3

Fig. 5. Seasonality parameters computed in TIMESAT: (a) beginning of season, (b) end of season,
(c) left 90 % level, (d) right 90 % level, (e) peak, (f) amplitude, (g) length of season, (h) integral
over the growing season giving the area between the fitted function and the average of the left
and right minimum values, (i) integral over the growing season giving the area between the fitted
function and the zero level.

Other phenological parameters extracted are the peak values and the amplitude.
The rate of increase in NDVI during the beginning of the season is theoretically
related to the physiognomy of the vegetation and can be estimated by looking at
the ratio between the amplitude and the time difference between the season start
and the mid of the season. Another interesting quantity is the asymmetry, which
can be defined as the ratio of the time differences between the mid of the season
and the start and end of the season. A value of the asymmetry that is smaller
than one indicate a rapid rise and a slow fall. Asymmetries larger than one, on the
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other hand, are indicative of a slow rise and rapid fall. This type of behavior is
often seen in areas with agricultural practices such as harvesting. Seasonal data can
be extracted for single pixel locations and for whole images. Single pixel data are
written to file and displayed with MATLAB. This is useful for testing the setting
of parameters in specific locations. Image data are written to binary or ASCII files,
and can be displayed with MATLAB or some suitable image processing software,
like IDRISI, Easi/Pace or Erdas.

3.6. Results

We analyzed 1100 by 1060 pixels PAL image windows covering Africa over the
period 1982-2000. For the sake of brevity, only a few examples are shown in this
paper. These examples are selected to be representative of the differences between
the two presented methods. Figure 6 shows the number of seasons, derived with the
procedure outlined in Section 3.2. Areas characterized by two growing seasons (bi-
modal) are mainly found in the Nile delta, parts of East Africa, along the Equator
in central Africa, and in small areas along the coasts of West Africa. The sizes
of these zones will vary somewhat with the parameter settings in the TIMESAT
program. In Figure 6, pixels were classified as bi-modal if the amplitude of the
secondary maxima were more than 40 % of the amplitude of the primary maxima.
The observed pattern agrees well with what is expected given the general climatic
circulation over Africa®®.

Fig. 6. Number of vegetational seasons in Africa 1999. Arrows point to uni-modal and bi-modal
areas.
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Figure 7 shows original NDVI and Savitzky-Golay filtered data for two a.feas,
whose locations are indicated by the arrows in Figure 6. Figure 7 (a) is from a
predominantly uni-modal (one season) area. Although there is a depression around
the center of the central year, that might indicate the presence of two seasons,
data is classified as uni-modal since the three years of data that have been used
indicate that the area is dominated by a one seasonal cycle. Figure 7 (b), however,
is bi-modal with two clearly developed growing cycles.
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Fig. 7. NDVI and Savitzky-Golay filtered data from (a) uni-modal and (b) bi-modal areas, as
indicated in Figure 7. Starts and ends of seasons are marked with circles.

Figure 8 displays original NDVI, Savitsky-Golay filtered data and asymmetric
Gaussian functions for three pixels in Africa. The time-series in’ Figure 8 (a) is
from the fringe of the Saharan desert, where the short annual season is dominated
by a very rapid increase and decrease, followed by a slowly decreasing plateau.
This composite behavior is typical for many extremely arid areas, and it is very
well represented by the adaptive Savitzky-Golay method. However, the asymmetric
Gaussian method has not represented the peak and the plateau of this time-series
accurately. Figure 8 (b) is from a humid area with frequent cloudiness, resulting in
a noisy time-series. The asymmetric Gaussian method has here generated a curve
that is considerably smoother than the Savitzky-Golay filtered data. This smooth
curve may be considered a better representative of the phenological curve of the
vegetation, since some of the rapid changes seen in the Savitzky-Golay curve would
not be expected to result from any physiological growth process, but rather from
remaining noise due to clouds or other disturbances. Although the Savitzky-Golay
curve follows the original data better, the smoothness of the asymmetric Gaussian
curve might here be preferred. Figure 8 (c¢) was extracted from the Sahelian zone,
well south of the Sahara. In this zone both the Savitzky-Golay and the asymmetric
Gaussian function have modeled the time-series very well. Note that the beginnings
and ends of seasons are located fairly close to each other in all three cases.
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Fig. 8. Comparisons between Savitzky-Golay and asymmetric Gaussian curves for selected pix-
els. Beginnings and ends of seasons are marked by circles (Savitzky-Golay) and squares (asym.
Gaussian). In (a) the Savitzky-Golay (dashed line) is superior to the asymmetric Gaussian (dotted
line), which fails at following the rapid increase of the narrow central peak. In (b) the Gaussian
method generates a smoother curve that better represents the behavior of vegetation than the
curve generated by the Savitzky-Golay method. In (c) the both methods generate similar curves
that both follow the data very well.

Figure 9 displays a number of parameters obtained with the Savitzky-Golay
method. (a) gives the start of the first season in western Africa for 1999. Near the
coast the season starts around decad 5 (end of February). The starting date then
shifts towards later dates until the border of the Sahara, where it falls at about
decad 25 (beginning of October). The observed pattern seems to be in general
agreement with a climatic pattern dominated by the movements of the Inter Tropical
Convergence Zone (ITCZ). In (b) the skewness or asymmetry is displayed. Note
the belt with strong negative skewness that indicates a very rapid response to
precipitation. (c) gives the peak value and (d) the amplitude for central Africa
for the first growing season of 1999. In this area NDVI values are generally high.
The seasonality of the evergreen vegetation, however, is not well developed and the
resulting amplitudes are correspondingly small.
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Fig. 9. Phenological parameters for the first growing season of 1999 extracted using Savitzky-
Golay filtered data. (a) start of the growing season. (b) asymmetry or skewness. (c) peak value for
the season. (d) amplitude of the season.

In order to investigate if there were any systematic differences between the two
methods, values for some key phenological variables were extracted and averaged for
each of the land-cover classes of the USGS digital land cover map??3°, Results for
all classes, except those smaller than 5 % of the land area, are displayed in Table 1.
The table indicates that the Savitzky-Golay method consistently generates higher
values of amplitude and integrated NDVI than the asymmetric Gaussian method.
Maximum values are also larger, but here the difference between the methods is
smaller than for the other variables.

3.7. Discussion

Based on time-series of Pathfinder NDVI data the methods presented in this pa-
per yield information about the seasonality of the underlying vegetation. Despite
the high level of noise present in the original data the methods generate data that
are spatially coherent and makes intuitive sense. AVHRR NDVI data are used in
this study but other and newer sensor data are equally possible. The methods al-
low for ancillary data to be incorporated, and CLAVR cloudiness data is used as
an indicator of uncertainties in the NDVI values. Although the effect of CLAVR
was not explicitly tested, it is believed that new and better data quality indica-
tors will improve the data fits. The seasonality patterns generated with the two
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methods largely correspond to each other with respect to the timings of seasonal
events. However, some derived phenological parameters, notably the amplitude and
the seasonal integrals, differ. The consistently lower values generated by the asym-
metric Gaussian fits are believed to be underestimates due to the slower response
to rapid phenological events. Although the timing of events is not much affected,
amplitudes and integrals are. The possibility to modify the fits to handle these situ-
ations will have to be explored in future work. The asymmetric Gaussian functions
generate smoother time-profiles that may represent the phenological behavior of
vegetation better in some areas, notably when the time-series are very noisy. Thus,
the two methods presented complement each other and the choice between them
should be made based on the type of application and the behavior of the time-
series in the specific area in mind. Other differences between the two methods are
that the Savitzky-Golay algorithm is faster than the asymmetric Gaussian fit, and
that it never fails to converge. This can happen with the non-linear Gaussian fit.
However, of the 19 years of data over Africa analyzed, the asymmetric Gaussian
fit only failed for a few hundred pixels, mostly over desert areas. The possibility to
generate explicit information about the seasonality of the vegetation increases the
potential use of time-series of satellite-derived spectral databases. It also underlines
the importance of storing and maintaining long data series for the benefit of studies
of phenological changes. Changes in key seasonality parameters might be used as
early indicator of regional climatic changes.
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